Câu hỏi:

30/06/2025 10

(1,5 điểm)

4.1. Cho tam giác \(ABC\) vuông tại \(B\) có \(AD\) là tia phân giác của \(\widehat {BAC}\) \(\left( {D \in BC} \right)\). Kẻ \(DF \bot AC\) tại \(F\). Hỏi khoảng cách từ \(D\) đến đường thẳng \(AC\) bằng bao nhiêu centimet? Biết rằng \(BD = 2{\rm{ cm}}{\rm{.}}\)

4.2. Tính chu vi tam giác cân có hai cạnh bằng \(4{\rm{ cm}}\) và \(8{\rm{ cm}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho tam giác   A B C   vuông tại   B   có   A D   là tia phân giác của   ˆ B A C     ( D ∈ B C )  . Kẻ   D F ⊥ A C   tại   F  . Hỏi khoảng cách từ   D   đến đường thẳng   A C   bằng bao nhiêu centimet? Biết rằng   B D = 2 c m .    4.2. Tính chu vi tam giác cân có hai cạnh bằng   4 c m   và   8 c m  . (ảnh 1)

Xét

\(\Delta ABD\) và \(\Delta AED\), có:

\(\widehat B = \widehat E = 90^\circ \)(gt)

\(AD\): chung (gt)

\(\widehat {{A_1}} = \widehat {{A_2}}\) (vì \(AD\) là tia phân giác của \(\widehat {BAC}\))

Do đó, \(\Delta ABD = \Delta AED\) (g.c.g)

Suy ra \(BD = ED\) (hai cạnh tương ứng)

Mà \(BD = 2{\rm{ cm}}\) nên \(ED = 2{\rm{ cm}}{\rm{.}}\)

Vậy khoảng cách từ \(D\) đến đường thẳng \(AC\) là \(2{\rm{ cm}}{\rm{.}}\)

4.2.

Vì tam giác cân nên sẽ có các trường hợp về độ dài ba cạnh như sau.

TH1. \(4{\rm{ cm, 4 cm, 8 cm}}\). Xét thấy \(4{\rm{ cm + 4 cm = 8 cm}}\) nên không thể xảy ra trường hợp này.

TH2. \(4{\rm{ cm, 8 cm, 8 cm}}\). Nhận thấy \(4{\rm{ cm }} + {\rm{ 8 cm}} > {\rm{8 cm}}\) nên thỏa mãn điều kiện về ba cạnh của tam giác.

Do đó, chu vi của tam giác là \(4 + 8 + 8 = 20{\rm{ }}\left( {{\rm{cm}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

2.1. Đổi 30 phút = \(5\) giờ.

Giả sử Lan đi với vận tốc \(10{\rm{ km/h}}\) thì hết \(t\) giờ.

Ta có vận tốc và thời gian Lan đi từ nhà đến trường là hai đại lượng tỉ lệ nghịch nên ta có \(12.0,5 = 10t.\)

Suy ra \(t = \frac{{12.0,5}}{{10}} = 0,6\) giờ.

Ta có \(0,6\) giờ = \(36\) phút.

Vậy nếu Lan đi với vận tốc \(10{\rm{ km/h}}\) thì hết 36 phút.

2.2. Gọi \(x,y,z\) (đồng) theo thứ tự là số tiền điện phải trả của mỗi hộ \(\left( {x,y,z > 0} \right)\).

Theo đề bài, số điện năng tiêu thụ của ba hộ sử dụng tỉ lệ với \(5;7;8\) nên ta có: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{8}\).

Tổng số tiền điện phải trả của ba hộ sử dụng điện trong một tháng là \(820\) nghìn đồng nên \(x + y + z = 820\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{8} = \frac{{x + y + z}}{{5 + 7 + 8}} = \frac{{820}}{{20}} = 41\).

Suy ra \(x = 5.41 = 205;{\rm{ }}y = 7.41 = 287;{\rm{ }}z = 8.41 = 328\) (thỏa mãn)

Vậy số điện ba hộ phải trả là 205 nghìn đồng, 287 nghìn đồng, 328 nghìn đồng.

Lời giải

Hướng dẫn giải

a) \(\frac{{16}}{x} = \frac{x}{{25}}\) nên \({x^2} = 16.25\) hay \({x^2} = 400\).

Do đó, \({x^2} = {20^2}\) hoặc \({x^2} = {\left( { - 20} \right)^2}\).

Suy ra, \(x = 20\) hoặc \(x = - 20\).

Vậy giá trị cần tìm là \(\left\{ {20; - 20} \right\}\).

b) \(\frac{x}{5} = \frac{y}{7}\) và \(x + y = 36;\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5} = \frac{y}{7} = \frac{{x + y}}{{5 + 7}} = \frac{{36}}{{12}} = 3\).

Suy ra \(x = 5.3 = 15\) và \(y = 7.3 = 21\).

Vậy \(x = 15\) và \(y = 21\).

c) \(x:y:z = 3:4:5\) và \(x + y - z = 144\)

Ta có \(x:y:z = 3:4:5\) hay \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{{144}}{2} = 72\).

Do đó, \(x = 3.72 = 216;{\rm{ }}y = 4.72 = 288;{\rm{ }}z = 5.72 = 360\).

Vậy \(x = 216,y = 288,z = 360.\)