Câu hỏi:

30/06/2025 11

(0,5 điểm) Cho \(a,b,c \ne 0\) và thỏa mãn \(\frac{{a + b - c}}{c} = \frac{{c + a - b}}{b} = \frac{{b + c - a}}{a}\). Tính giá trị của biểu thức \(S = \frac{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}}{{abc}}.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Trường hợp 1. \(a,b,c \ne 0\) và \(a + b + c = 0\) hay \(a + b = - c;{\rm{ }}a + c = - b;{\rm{ }}b + c = - a\).

Thay vào biểu thức \(S = \frac{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}}{{abc}}\), ta được: \(S = \frac{{ - a.\left( { - b} \right).\left( { - c} \right)}}{{abc}} = \frac{{ - abc}}{{abc}} = - 1.\)

Trường hợp 2. \(a,b,c \ne 0\) và \(a + b + c \ne 0\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{{a + b - c}}{c} = \frac{{c + a - b}}{b} = \frac{{b + c - a}}{a} = \frac{{a + b - c + c + a - b + b + c - a}}{{c + b + a}}\)\( = \frac{{a + b + c}}{{a + b + c}} = 1\).

Suy ra \(a + b - c = a;{\rm{ }}a + c - b = b;{\rm{ }}b + c - a = a\).

Do đó, \(a + b = 2c;{\rm{ }}c + a = 2b;{\rm{ }}b + c = 2a\).

Thay \(a + b = 2c;{\rm{ }}c + a = 2b;{\rm{ }}b + c = 2a\) vào biểu thức \(S\), ta được:

\(S = \frac{{\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)}}{{abc}} = \frac{{2a.2b.2c}}{{abc}} = 8\).

Vậy \(S = - 1\) khi \(\frac{{a + b - c}}{c} = \frac{{c + a - b}}{b} = \frac{{b + c - a}}{a}\), \(a,b,c \ne 0\) và \(a + b + c = 0\).

Và \(S = 8\) khi \(\frac{{a + b - c}}{c} = \frac{{c + a - b}}{b} = \frac{{b + c - a}}{a}\), \(a,b,c \ne 0\) và \(a + b + c \ne 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho tam giác   A B C   vuông tại   B   có   A D   là tia phân giác của   ˆ B A C     ( D ∈ B C )  . Kẻ   D F ⊥ A C   tại   F  . Hỏi khoảng cách từ   D   đến đường thẳng   A C   bằng bao nhiêu centimet? Biết rằng   B D = 2 c m .    4.2. Tính chu vi tam giác cân có hai cạnh bằng   4 c m   và   8 c m  . (ảnh 1)

Xét

\(\Delta ABD\) và \(\Delta AED\), có:

\(\widehat B = \widehat E = 90^\circ \)(gt)

\(AD\): chung (gt)

\(\widehat {{A_1}} = \widehat {{A_2}}\) (vì \(AD\) là tia phân giác của \(\widehat {BAC}\))

Do đó, \(\Delta ABD = \Delta AED\) (g.c.g)

Suy ra \(BD = ED\) (hai cạnh tương ứng)

Mà \(BD = 2{\rm{ cm}}\) nên \(ED = 2{\rm{ cm}}{\rm{.}}\)

Vậy khoảng cách từ \(D\) đến đường thẳng \(AC\) là \(2{\rm{ cm}}{\rm{.}}\)

4.2.

Vì tam giác cân nên sẽ có các trường hợp về độ dài ba cạnh như sau.

TH1. \(4{\rm{ cm, 4 cm, 8 cm}}\). Xét thấy \(4{\rm{ cm + 4 cm = 8 cm}}\) nên không thể xảy ra trường hợp này.

TH2. \(4{\rm{ cm, 8 cm, 8 cm}}\). Nhận thấy \(4{\rm{ cm }} + {\rm{ 8 cm}} > {\rm{8 cm}}\) nên thỏa mãn điều kiện về ba cạnh của tam giác.

Do đó, chu vi của tam giác là \(4 + 8 + 8 = 20{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Hướng dẫn giải

2.1. Đổi 30 phút = \(5\) giờ.

Giả sử Lan đi với vận tốc \(10{\rm{ km/h}}\) thì hết \(t\) giờ.

Ta có vận tốc và thời gian Lan đi từ nhà đến trường là hai đại lượng tỉ lệ nghịch nên ta có \(12.0,5 = 10t.\)

Suy ra \(t = \frac{{12.0,5}}{{10}} = 0,6\) giờ.

Ta có \(0,6\) giờ = \(36\) phút.

Vậy nếu Lan đi với vận tốc \(10{\rm{ km/h}}\) thì hết 36 phút.

2.2. Gọi \(x,y,z\) (đồng) theo thứ tự là số tiền điện phải trả của mỗi hộ \(\left( {x,y,z > 0} \right)\).

Theo đề bài, số điện năng tiêu thụ của ba hộ sử dụng tỉ lệ với \(5;7;8\) nên ta có: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{8}\).

Tổng số tiền điện phải trả của ba hộ sử dụng điện trong một tháng là \(820\) nghìn đồng nên \(x + y + z = 820\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{8} = \frac{{x + y + z}}{{5 + 7 + 8}} = \frac{{820}}{{20}} = 41\).

Suy ra \(x = 5.41 = 205;{\rm{ }}y = 7.41 = 287;{\rm{ }}z = 8.41 = 328\) (thỏa mãn)

Vậy số điện ba hộ phải trả là 205 nghìn đồng, 287 nghìn đồng, 328 nghìn đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP