Câu hỏi:

30/06/2025 15

(1,5 điểm) Cho tam giác \(ABC\), trung tuyến \(BD\). Trên tia đối của tia \(DB\) lấy điểm \(E\) sao cho \(DE = BD\). Gọi \(P,Q\) lần lượt là điểm trên \(BE\) sao cho \(BP = PQ = QE\). Chứng minh:

a) \(CP,CQ\) cắt \(AB,AE\) tại trung điểm của \(AB,AE\).

b) \(CP\parallel AQ\) và \(CQ\parallel AP.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

(1,5 điểm) Cho tam giác   A B C  , trung tuyến   B D  . Trên tia đối của tia   D B   lấy điểm   E   sao cho   D E = B D  . Gọi   P , Q   lần lượt là điểm trên   B E   sao cho   B P = P Q = Q E  . Chứng minh:  a)   C P , C Q   cắt   A B , A E   tại trung điểm của   A B , A E  .  b)   C P ∥ A Q   và   C Q ∥ A P . (ảnh 1)

a) Gọi \(M,N\) lần lượt là trung điểm của \(AB,AE\).

Ta có: \(BP = PQ = QE\) và \(BD = DE\).

Mà \(BD = BP + PD;DE = QE + DQ\).

Suy ra \(PD = DQ\).

Hay \(D\) là trung điểm của \(PQ\).

Ta có: \(PD = \frac{1}{2}PQ\) hay \(PD = \frac{1}{2}BP\). Suy ra \(PD = \frac{1}{3}BD\)

Lại có \(BD\) là trung tuyến của \(\Delta ABC\).

Suy ra \(P\)là trọng tâm của \(\Delta ABC\).

Do đó, \(CP\) cắt \(AB\) tại trung điểm \(M.\)

Tương tự ta có: \(QD = \frac{1}{2}PQ = \frac{1}{2}QE\) hay \(QD = \frac{1}{3}ED\).

Do đó, \(Q\) là trọng tâm của tam giác \(AEC\).

Suy ra \(CQ\) cắt \(AE\) tại trung điểm \(N\).

b) Xét \(\Delta ADP\) và \(\Delta CDQ\) có:

\(AD = DC\) (gt)

\(\widehat {ADP} = \widehat {CDQ}\) (đối đỉnh)

\(PD = DQ\) (cmt)

Suy ra \(\Delta ADP = \Delta CDQ\) (c.g.c)

Suy ra \(\widehat {DAP} = \widehat {DCQ}\) (hai góc tương ứng).

Mà hai góc ở vị trí so le trong nên \(CQ\parallel AP.\)

Xét \(\Delta ADQ\) và \(\Delta CDP\) có:

\(AD = DC\) (gt)

\(\widehat {ADQ} = \widehat {CDP}\) (đối đỉnh)

\(PD = DQ\) (cmt)

Suy ra \(\Delta ADQ = \Delta CDP\) (c.g.c)

Suy ra \(\widehat {DAQ} = \widehat {DCP}\) (hai góc tương ứng).

Mà hai góc ở vị trí so le trong nên \(CP\parallel AQ\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho tam giác   A B C   vuông tại   B   có   A D   là tia phân giác của   ˆ B A C     ( D ∈ B C )  . Kẻ   D F ⊥ A C   tại   F  . Hỏi khoảng cách từ   D   đến đường thẳng   A C   bằng bao nhiêu centimet? Biết rằng   B D = 2 c m .    4.2. Tính chu vi tam giác cân có hai cạnh bằng   4 c m   và   8 c m  . (ảnh 1)

Xét

\(\Delta ABD\) và \(\Delta AED\), có:

\(\widehat B = \widehat E = 90^\circ \)(gt)

\(AD\): chung (gt)

\(\widehat {{A_1}} = \widehat {{A_2}}\) (vì \(AD\) là tia phân giác của \(\widehat {BAC}\))

Do đó, \(\Delta ABD = \Delta AED\) (g.c.g)

Suy ra \(BD = ED\) (hai cạnh tương ứng)

Mà \(BD = 2{\rm{ cm}}\) nên \(ED = 2{\rm{ cm}}{\rm{.}}\)

Vậy khoảng cách từ \(D\) đến đường thẳng \(AC\) là \(2{\rm{ cm}}{\rm{.}}\)

4.2.

Vì tam giác cân nên sẽ có các trường hợp về độ dài ba cạnh như sau.

TH1. \(4{\rm{ cm, 4 cm, 8 cm}}\). Xét thấy \(4{\rm{ cm + 4 cm = 8 cm}}\) nên không thể xảy ra trường hợp này.

TH2. \(4{\rm{ cm, 8 cm, 8 cm}}\). Nhận thấy \(4{\rm{ cm }} + {\rm{ 8 cm}} > {\rm{8 cm}}\) nên thỏa mãn điều kiện về ba cạnh của tam giác.

Do đó, chu vi của tam giác là \(4 + 8 + 8 = 20{\rm{ }}\left( {{\rm{cm}}} \right)\).

Lời giải

Hướng dẫn giải

2.1. Đổi 30 phút = \(5\) giờ.

Giả sử Lan đi với vận tốc \(10{\rm{ km/h}}\) thì hết \(t\) giờ.

Ta có vận tốc và thời gian Lan đi từ nhà đến trường là hai đại lượng tỉ lệ nghịch nên ta có \(12.0,5 = 10t.\)

Suy ra \(t = \frac{{12.0,5}}{{10}} = 0,6\) giờ.

Ta có \(0,6\) giờ = \(36\) phút.

Vậy nếu Lan đi với vận tốc \(10{\rm{ km/h}}\) thì hết 36 phút.

2.2. Gọi \(x,y,z\) (đồng) theo thứ tự là số tiền điện phải trả của mỗi hộ \(\left( {x,y,z > 0} \right)\).

Theo đề bài, số điện năng tiêu thụ của ba hộ sử dụng tỉ lệ với \(5;7;8\) nên ta có: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{8}\).

Tổng số tiền điện phải trả của ba hộ sử dụng điện trong một tháng là \(820\) nghìn đồng nên \(x + y + z = 820\).

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{8} = \frac{{x + y + z}}{{5 + 7 + 8}} = \frac{{820}}{{20}} = 41\).

Suy ra \(x = 5.41 = 205;{\rm{ }}y = 7.41 = 287;{\rm{ }}z = 8.41 = 328\) (thỏa mãn)

Vậy số điện ba hộ phải trả là 205 nghìn đồng, 287 nghìn đồng, 328 nghìn đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP