(0,5 điểm) Chứng minh rằng nếu \(a\left( {y + z} \right) = b\left( {z + x} \right) = c\left( {x + y} \right)\) với \(a,b,c\) là các số khác nhau và khác \(0\) thì \(\frac{{y - z}}{{a\left( {b - c} \right)}} = \frac{{z - x}}{{b\left( {c - a} \right)}} = \frac{{x - y}}{{c\left( {a - b} \right)}}\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: \(a\left( {y + z} \right) = b\left( {z + x} \right) = c\left( {x + y} \right)\) (1)
Vì \(a,b,c \ne 0\) nên chia các vế của (1) cho \(abc\) ta được: \(\frac{{a\left( {y + z} \right)}}{{abc}} = \frac{{b\left( {z + x} \right)}}{{abc}} = \frac{{c\left( {x + y} \right)}}{{abc}}\).
Suy ra \(\frac{{y + z}}{{bc}} = \frac{{z + x}}{{ac}} = \frac{{x + y}}{{ab}}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{{z + x}}{{ac}} = \frac{{x + y}}{{ab}} = \frac{{\left( {x + y} \right) - \left( {z + x} \right)}}{{ab - ac}} = \frac{{y - z}}{{a\left( {b - c} \right)}}\);
\(\frac{{y + z}}{{bc}} = \frac{{z + x}}{{ac}} = \frac{{\left( {x + z} \right) - \left( {y + z} \right)}}{{ac - bc}} = \frac{{x - y}}{{c\left( {a - b} \right)}}\);
\(\frac{{y + z}}{{bc}} = \frac{{x + y}}{{ab}} = \frac{{\left( {x + z} \right) - \left( {y + z} \right)}}{{ac - bc}} = \frac{{x - y}}{{c\left( {a - b} \right)}}\).
Do đó \(\frac{{y - z}}{{a\left( {b - c} \right)}} = \frac{{z - x}}{{b\left( {c - a} \right)}} = \frac{{x - y}}{{c\left( {a - b} \right)}}\) (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) \(\frac{{1,2}}{x} = \frac{5}{2}\) nên \(x = \frac{{2.1,2}}{5} = 0,48\). Vậy \(x = 0,48\).
b) \(\frac{x}{3} = \frac{y}{2}\) và \(x + y = 10\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{2} = \frac{{x + y}}{{3 + 2}} = \frac{{10}}{5} = 2\).
Suy ra \(x = 3.2 = 6;{\rm{ }}y = 2.2 = 4\).
Vậy \(x = 6;y = 4.\)
c) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{6}\) và \(y + z = 80\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{4} = \frac{z}{6} = \frac{{y + z}}{{4 + 6}} = \frac{{80}}{{10}} = 8\).
Suy ra \(x = 3.8 = 24;{\rm{ }}y = 4.8 = 32;{\rm{ }}z = 6.8 = 48\).
Vậy \(x = 24;{\rm{ }}y = 32;{\rm{ }}z = 48.\)
Lời giải
Hướng dẫn giải
4.1.
Xét
\(\Delta ABM\) và \(\Delta ACM\) có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat B = \widehat C\)(\(\Delta ABC\) cân tại \(A\))
\(BM = MC\)
Suy ra \(\Delta ABM = \Delta ACM\) (c.g.c)
Do đó, \(\widehat {AMB} = \widehat {AMC}\) (hai góc tương ứng)
Mà hai góc \(\widehat {AMB} = \widehat {AMC}\) (hai góc tương ứng) (1)
Mà hai góc \(\widehat {AMB}\) và \(\widehat {AMC}\) là hai góc kề bù.
Suy ra \(\widehat {AMB} + \widehat {AMC} = 180^\circ \) (2)
Từ (1) và (2) suy ra \(\widehat {AMB} = \widehat {AMC} = \frac{{180^\circ }}{2} = 90^\circ \).
Do đó, \(AM \bot BC\) tại \(M.\)
Vậy \(AM\) là khoảng cách từ \(A\) đến cạnh \(BC\) của tam giác \(ABC.\)
4.2. Ta có \(BC > AB,BC > AC\) nên \(BC + BC + BC > AC + AB + BC\) tức là \(3BC > 18\) hay \(BC > 6.\)
Ta có \(BC < AC + AB\) nên \(BC + BC < AB + AC + BC\), tức là \(2BC < 18\) nên \(BC < 9\).
Từ đây suy ra \(6 < BC < 9\) và \(BC\) là một số tự nhiên chẵn nên \(BC = 8{\rm{ cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.