Câu hỏi:

30/06/2025 33 Lưu

(1,5 điểm) Tìm \(x,y,z\) trong các tỉ lệ thức sau:

a) \(\frac{{1,2}}{x} = \frac{5}{2};\)

b) \(\frac{x}{3} = \frac{y}{2}\) và \(x + y = 10;\)

c) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{6}\) và \(y + z = 80\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) \(\frac{{1,2}}{x} = \frac{5}{2}\) nên \(x = \frac{{2.1,2}}{5} = 0,48\). Vậy \(x = 0,48\).

b) \(\frac{x}{3} = \frac{y}{2}\) và \(x + y = 10\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{2} = \frac{{x + y}}{{3 + 2}} = \frac{{10}}{5} = 2\).

Suy ra \(x = 3.2 = 6;{\rm{ }}y = 2.2 = 4\).

Vậy \(x = 6;y = 4.\)

c) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{6}\) và \(y + z = 80\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{x}{3} = \frac{y}{4} = \frac{z}{6} = \frac{{y + z}}{{4 + 6}} = \frac{{80}}{{10}} = 8\).

Suy ra \(x = 3.8 = 24;{\rm{ }}y = 4.8 = 32;{\rm{ }}z = 6.8 = 48\).

Vậy \(x = 24;{\rm{ }}y = 32;{\rm{ }}z = 48.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

4.1.

(1,5 điểm)  4.1. Cho tam giác   A B C   cân tại   A  . Có   M   là trung điểm của đoạn thẳng   B C  . Chứng minh   A M   là khoảng cách từ điểm   A   đến cạnh   B C   của tam giác   A B C  .  4.2. Tìm tam giác   A B C   có chu vi   18 c m  ,   B C > A C > A B  . Tính độ dài cạnh   B C   biết rằng độ dài đó là một số chẵn (đơn vị: cm). (ảnh 1)

Xét

\(\Delta ABM\) và \(\Delta ACM\) có:

\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))

\(\widehat B = \widehat C\)(\(\Delta ABC\) cân tại \(A\))

\(BM = MC\)

Suy ra \(\Delta ABM = \Delta ACM\) (c.g.c)

Do đó, \(\widehat {AMB} = \widehat {AMC}\) (hai góc tương ứng)

Mà hai góc \(\widehat {AMB} = \widehat {AMC}\) (hai góc tương ứng) (1)

Mà hai góc \(\widehat {AMB}\) và \(\widehat {AMC}\) là hai góc kề bù.

Suy ra \(\widehat {AMB} + \widehat {AMC} = 180^\circ \) (2)

Từ (1) và (2) suy ra \(\widehat {AMB} = \widehat {AMC} = \frac{{180^\circ }}{2} = 90^\circ \).

Do đó, \(AM \bot BC\) tại \(M.\)

Vậy \(AM\) là khoảng cách từ \(A\) đến cạnh \(BC\) của tam giác \(ABC.\)

4.2. Ta có \(BC > AB,BC > AC\) nên \(BC + BC + BC > AC + AB + BC\) tức là \(3BC > 18\) hay \(BC > 6.\)

Ta có \(BC < AC + AB\) nên \(BC + BC < AB + AC + BC\), tức là \(2BC < 18\) nên \(BC < 9\).

Từ đây suy ra \(6 < BC < 9\) và \(BC\) là một số tự nhiên chẵn nên \(BC = 8{\rm{ cm}}{\rm{.}}\)

Lời giải

Hướng dẫn giải

2.1. Có \(10\) vòi nước công suất như nhau cùng chảy vào một bể thì sau 6 giờ thì đầy bể. Vậy hỏi số vòi nước cùng công suất để sau 5 giờ thì đầy bể là bao nhiêu?

2.2.Gọi số cây mỗi lớp 7A, 7B, 7C trồng được lần lượt là \(a,b,c\) cây \(\left( {a,b,c \in {\mathbb{N}^*}} \right)\).

Số cây lớp 7A, 7B, 7C trồng lần lượt tỉ lệ với \(6;4;5\) suy ra \(\frac{a}{6} = \frac{b}{4} = \frac{c}{5}\).

Tổng số cây lớp 7B và 7C trồng được nhiều hơn của lớp 7A là \(15\) cây.

Do đó, ta có: \(b + c - a = 15\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{6} = \frac{b}{4} = \frac{c}{5} = \frac{{b + c - a}}{{4 + 5 - 6}} = \frac{{15}}{3} = 5\).

Ta có: \(a = 6.5 = 30\) (thỏa mãn), \(b = 5.4 = 20\) (thỏa mãn), \(c = 5.5 = 25\) (thỏa mãn)

Vậy số cây mỗi lớp 7A, 7B, 7C trồng được lần lượt là \(30\) cây, \(20\) cây, \(25\) cây.