Câu hỏi:
03/07/2025 35(1,0 điểm) Giải các hệ phương trình sau:
a) \[\left\{ \begin{array}{l}2x + 5y = 8\\2x - 3y = 0\end{array} \right.\];
b) \[\left\{ \begin{array}{l}2x - 3y = 7\\3x + 2y = 4\end{array} \right..\]
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Từ phương trình thứ nhất ta có \[2x + 5y = 8\] suy ra \(x = 4 - \frac{5}{2}y\). Thế vào phương trình thứ hai, ta được:
\[2\left( {4 - \frac{5}{2}y} \right) - 3y = 0\], tức là \[8 - 8y = 0\], suy ra \[8y = 8\] hay \[y = 1\].
Từ đó \[x = 4 - \frac{5}{2} = \frac{3}{2}.\]
Vậy hệ phương trình đã cho có nghiệm là \[\left( {\frac{3}{2}\,;\,\,1} \right).\]
b) Từ phương trình thứ nhất ta có \[2x - 3y = 7\] suy ra \(x = \frac{7}{2} + \frac{3}{2}y\). Thế vào phương trình thứ hai, ta được:
\[3\left( {\frac{7}{2} + \frac{3}{2}y} \right) + 2y = 4\], tức là \[\frac{{21}}{2} + \frac{{13}}{2}y = 4\], suy ra \[\frac{{13}}{2}y = - \frac{{13}}{2}\] hay \[y = - 1\].
Từ đó \[x = \frac{7}{2} + \frac{3}{2} \cdot \left( { - 1} \right) = 2.\]
Vậy hệ phương trình đã cho có nghiệm là \[\left( {2\,; - \,1} \right).\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) \[4x\left( {x - 3} \right) - 3x + 9 = 0\] \(4x\left( {x - 3} \right) - 3\left( {x - 3} \right) = 0\) \(\left( {4x - 3} \right)\left( {x - 3} \right) = 0\) \(4x - 3 = 0\) hoặc \(x - 3 = 0\) \(x = \frac{3}{4}\) hoặc \(x = 3\). Vậy nghiệm của phương trình là \(x = \frac{3}{4}\) và \(x = 3\). |
b) \(\frac{2}{{x - 3}} - \frac{3}{{x + 3}} = \frac{{3x + 5}}{{{x^2} - 9}}\) Điều kiện xác định \(x + 3 \ne 0\); \(x - 3 \ne 0\) và \({x^2} - 9 \ne 0\) hay \(x \ne - 3\) và \(x \ne 3\). Quy đồng mẫu hai vế của phương trình, ta được \(\frac{{2\left( {x + 3} \right) - 3\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{3x + 5}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\) Suy ra \(2\left( {x + 3} \right) - 3\left( {x - 3} \right) = 3x + 5\) \(2x + 6 - 3x + 9 = 3x + 5\) \[15 - x = 3x + 5\] \[4x = 10\] \[x = \frac{5}{2}\]. Giá trị \[x = \frac{5}{2}\] thỏa mãn ĐKXĐ. Vậy nghiệm của phương trình là \[x = \frac{5}{2}\]. |
c) \[3\left( {x + 2} \right) \le x - 8\] Ta có: \[3\left( {x + 2} \right) \le x - 8\] \[3x + 6 \le x - 8\] \[3x - x \le - 8 - 6\] \[2x \le \; - 14\] \[x \le - 7\]. Vậy nghiệm của bất phương trình là \(x \le - 7.\) |
d) \(3\left( {x - 2} \right) + 7x \le 4\left( {x + 1} \right) + 14\) Ta có: \(3x - 6 + 7x \le 4x + 4 + 14\) \(10x - 6 \le 4x + 18\) \(10x - 4x \le 18 + 6\) \(6x \le 24\) \(x \le 4\). Vậy nghiệm của bất phương trình là \(x \le 4\). |
Câu 2
(2,0 điểm)
1. Cho hình vẽ bên. Tính số đo góc \(\alpha \) và các độ dài \(x,y\) (góc làm tròn đến độ, độ dài làm tròn đến hàng phần trăm).
2.
Một người đứng cách nơi thả khinh khí cầu 800 m nhìn thấy nó với góc nghiêng \(38^\circ .\) Tính độ cao của khinh khí cầu so với mặt đất. Cho biết khoảng cách từ mặt đất đến mắt người đó là \(1,5\,\,{\rm{m}}\) (kết quả làm tròn đến hàng phần mười).Lời giải
Hướng dẫn giải
1. Xét \(\Delta ABD\) vuông tại \(A\), ta có: \(\tan \widehat {BAD} = \frac{3}{5}\) suy ra \(\widehat {BAD} \approx 31^\circ \) hay \(\alpha \approx 31^\circ \).
Xét tam giác \(ABC\), ta có: \(\widehat {BAC} = \widehat {BAD} + \widehat {DAC} \approx 31^\circ + 40^\circ = 71^\circ \).
Ta có: \(\tan \widehat {BAC} = \frac{{BC}}{{AB}}\) hay \(BC = AB.\tan \widehat {BAC} \approx 5.\tan 71^\circ \approx 14,52.\)
Lại có \(BD + DC = BC\) hay \(DC \approx 14,52 - 3 = 11,52\) suy ra \(x \approx 11,52.\)
Áp dụng định lý Pythagore vào tam giác \(ABC\), ta có: \(A{B^2} + A{C^2} = B{C^2}\)
Suy ra \(B{C^2} = {5^2} + 14,{5^2} = 235,25\) nên \(BC \approx 15,33\) hay \(y \approx 15,33.\)
Vậy \(\alpha \approx 31^\circ \), \(x \approx 11,52\), \(y \approx 15,33.\)
2. Quan sát hình vẽ hình học của bài toán, ta có: Độ cao của khinh khí cầu so với mặt đất là đoạn thẳng \(BE.\) Xét tam giác \(ABC\) vuông tại \(A\), ta có: \(\tan \widehat {BCA} = \frac{{AB}}{{AC}}\) hay \(AB = AC.\tan \widehat {BCA}\). Suy ra \[AB = 800.\tan 38^\circ \approx 625\,\,\left( {\rm{m}} \right)\]. Ta có \(BE = AB + AE \approx 625 + 1,5 = 626,5\,\,\left( {\rm{m}} \right)\). |
Vậy độ cao của khinh khí cầu so với mặt đất
khoảng \(626,5\,\,{\rm{m}}{\rm{.}}\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.