Câu hỏi:

03/07/2025 46 Lưu

Gọi \(\left( {x;\,\,y} \right)\) là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}2\left( {x + y} \right) + 3\left( {x - y} \right) = 4\\\left( {x + y} \right) + 2\left( {x - y} \right) = 5\end{array} \right..\] Bạn An sau khi giải hệ phương trình thì viết được hệ thức \(y = ax.\) Tìm \(a.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: \(a = 13.\)

Từ phương trình \[2\left( {x + y} \right) + 3\left( {x - y} \right) = 4\] ta được \[2x + 2y + 3x - 3y = 4\] hay \[5x - y = 4.\]

Từ phương trình \[\left( {x + y} \right) + 2\left( {x - y} \right) = 5\] ta được \[x + y + 2x - 2y = 5\] hay \[3x - y = 5\].

Gọi   ( x ; y )   là nghiệm của hệ phương trình   { 2 ( x + y ) + 3 ( x − y ) = 4 ( x + y ) + 2 ( x − y ) = 5 .   Bạn An sau khi giải hệ phương trình thì viết được hệ thức   y = a x .   Tìm   (ảnh 1)

Theo bài, \(y = ax\) nên ta có \( - \frac{{13}}{2} = a \cdot \left( { - \frac{1}{2}} \right)\), suy ra \(a = 13.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét tam giác \(OPQ\) vuông tại \(O\), ta có:

⦁ \(OQ = OQ \cdot \tan Q = 10 \cdot \tan 35^\circ \approx 7,00{\rm{\;(cm}});\)

⦁ \(OQ = PQ \cdot \cos Q\)

Suy ra \(PQ = \frac{{OQ}}{{\cos Q}} = \frac{{10}}{{\cos 35^\circ }} \approx 12,21{\rm{\;(cm)}}{\rm{.}}\)

Vậy \(OQ \approx 7,00{\rm{\;cm}},\,\,PQ \approx 12,21{\rm{\;cm}}.\)

1. Cho tam giác   O P Q   vuông tại   O   có   ˆ Q = 35 ∘   và   O Q = 10 c m .   Tính độ dài các cạnh còn lại của tam giác   O P Q   (làm tròn kết quả đến hàng phần trăm đối với đơn vị của cm).  2. Một chiếc thang   A C   được dựng vào một bức tường thẳng đứng (hình vẽ).  – Ban đầu khoảng cách từ chân thang đến tường là   B C = 1 , 3 m   và góc tạo bởi thang và phương nằm ngang là   ˆ A C B = 66 ∘  .  – Sau đó, đầu   A   của thang bị trượt xuống   40 c m   đến vị trí   D .   Khi đó, góc   D E B   tạo bởi thang và phương nằm ngang bằng bao nhiêu (Kết quả số đo góc làm tròn đến phút)? (ảnh 2)

2. Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).

Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).

Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).

Xét \(\Delta BDE\) vuông tại \(B,\) ta có:

\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)

Câu 2

Lời giải

Đáp án đúng là: D

Xét \(\Delta HAC\) vuông tại \(H\) ta có: \(\sin \widehat {HAC} = \frac{{HC}}{{AC}}\).

Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(\sin B = \frac{{AC}}{{BC}}\).

Mà \(\widehat {HAC} + \widehat {C\,} = 90^\circ \) và \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) nên \(\sin \widehat {HAC} = \sin B = \frac{{AC}}{{BC}}\)

Xét tam giác   A B C   vuông tại   A   có đường cao   A H  . Khi đó   sin ˆ H A C   bằng (ảnh 1)

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP