(2,5 điểm)
1. Cho tam giác \(OPQ\) vuông tại \(O\) có \(\widehat {Q\,} = 35^\circ \) và \(OQ = 10{\rm{ cm}}{\rm{.}}\) Tính độ dài các cạnh còn lại của tam giác \(OPQ\) (làm tròn kết quả đến hàng phần trăm đối với đơn vị của cm).
2. Một chiếc thang \(AC\) được dựng vào một bức tường thẳng đứng (hình vẽ).
– Ban đầu khoảng cách từ chân thang đến tường là \(BC = 1,3{\rm{\;m}}\) và góc tạo bởi thang và phương nằm ngang là \(\widehat {ACB} = 66^\circ \).
– Sau đó, đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}}\) đến vị trí \(D.\) Khi đó, góc \(DEB\) tạo bởi thang và phương nằm ngang bằng bao nhiêu (Kết quả số đo góc làm tròn đến phút)?

Quảng cáo
Trả lời:

Hướng dẫn giải
a) Xét tam giác \(OPQ\) vuông tại \(O\), ta có:
⦁ \(OQ = OQ \cdot \tan Q = 10 \cdot \tan 35^\circ \approx 7,00{\rm{\;(cm}});\)
⦁ \(OQ = PQ \cdot \cos Q\)
Suy ra \(PQ = \frac{{OQ}}{{\cos Q}} = \frac{{10}}{{\cos 35^\circ }} \approx 12,21{\rm{\;(cm)}}{\rm{.}}\)
Vậy \(OQ \approx 7,00{\rm{\;cm}},\,\,PQ \approx 12,21{\rm{\;cm}}.\)
2. Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).
Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).
Xét \(\Delta BDE\) vuông tại \(B,\) ta có:
\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Xét \(\Delta HAC\) vuông tại \(H\) ta có: \(\sin \widehat {HAC} = \frac{{HC}}{{AC}}\). Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(\sin B = \frac{{AC}}{{BC}}\). Mà \(\widehat {HAC} + \widehat {C\,} = 90^\circ \) và \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) nên \(\sin \widehat {HAC} = \sin B = \frac{{AC}}{{BC}}\) |
|
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Xét \(\Delta ABC\) vuông tại \(A\) có \(\widehat {B\,} = \alpha \). Do \(\widehat {B\,}\) là góc nhọn nên \(0^\circ < \widehat {B\,} < 90^\circ \) hay \[0^\circ < \alpha < 90^\circ .\] Ta có: \(\sin \alpha = \frac{{AC}}{{BC}}\) và \(\cos \alpha = \frac{{AB}}{{BC}}.\) \(B{C^2} = A{B^2} + A{C^2}\) (định lí Pythagore). |
|
\[{\sin ^2}\alpha + {\cos ^2}\alpha = {\left( {\frac{{AC}}{{BC}}} \right)^2} + {\left( {\frac{{AB}}{{BC}}} \right)^2} = \frac{{A{C^2}}}{{B{C^2}}} + \frac{{A{B^2}}}{{B{C^2}}} = \frac{{A{C^2} + A{B^2}}}{{B{C^2}}} = \frac{{B{C^2}}}{{B{C^2}}} = 1.\]
Với \[0^\circ < \alpha < 90^\circ \] thì \[1 - \cos \alpha \ne 0\] và \[\sin \alpha - \cos \alpha + 1 \ne 0\].
Ta có: \[\frac{{\sin \alpha + \cos \alpha - 1}}{{1 - \cos \alpha }} - \frac{{2\cos \alpha }}{{\sin \alpha - \cos \alpha + 1}}\]
\[ = \frac{{\left( {\sin \alpha + \cos \alpha - 1} \right)\left( {\sin \alpha - \cos \alpha + 1} \right) - 2\cos \alpha \left( {1 - \cos \alpha } \right)}}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]
\[ = \frac{{\left[ {\sin \alpha + \left( {\cos \alpha - 1} \right)} \right]\left[ {\sin \alpha - \left( {\cos \alpha - 1} \right)} \right] - 2\cos \alpha \left( {1 - \cos \alpha } \right)}}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]
\[ = \frac{{{{\sin }^2}\alpha - {{\left( {\cos \alpha - 1} \right)}^2} - 2\cos \alpha + 2{{\cos }^2}\alpha }}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]
\[ = \frac{{{{\sin }^2}\alpha - \left( {{{\cos }^2}\alpha - 2\cos \alpha + 1} \right) - 2\cos \alpha + 2{{\cos }^2}\alpha }}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]
\[ = \frac{{{{\sin }^2}\alpha - {{\cos }^2}\alpha + 2\cos \alpha - 1 - 2\cos \alpha + 2{{\cos }^2}\alpha }}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]
\[ = \frac{{{{\sin }^2}x + {{\cos }^2}x - 1}}{{\left( {1 - \cos x} \right)\left( {\sin x - \cos x + 1} \right)}}.\]
\[ = \frac{{1 - 1}}{{\left( {1 - \cos x} \right)\left( {\sin x - \cos x + 1} \right)}} = 0\] (vì \[1 - \cos x \ne 0\] và \[\sin x - \cos x + 1 \ne 0)\]
Vậy \[\frac{{\sin x + \cos x - 1}}{{1 - \cos x}} = \frac{{2\cos x}}{{\sin x - \cos x + 1}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.