Câu hỏi:
03/07/2025 16(2,0 điểm)
1. Tìm các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:
\(x{\rm{FeO}} + y{{\rm{O}}_2}\mathop \to \limits^{{\rm{t}}^\circ } 2{\rm{F}}{{\rm{e}}_3}{{\rm{O}}_4}.\)
Từ đó, hãy hoàn thiện phương trình phản ứng hóa học sau khi được cân bằng.
2. Giải bài toán sau bằng cách lập hệ phương trình:
Gen B có \(3\,\,600\) liên kết hydrogen và có hiệu giữa nucleotide loại \[T\] với loại nucleotide không bổ sung với nó là \(300\) nucleotide. Tính số nucleotide từng loại của gen B. Biết rằng, để tính số lượng nucleotide \[\left( {A,{\rm{ }}T,{\rm{ }}G,{\rm{ }}C} \right)\] trong phân tử DNA, ta áp dụng nguyên tắc bổ sung: “\[A\] liên kết với \[T\] bằng 2 liên kết hydrogen và \[G\] liên kết với \[C\] bằng 3 liên kết hydrogen” và \(\% A = \% T,\,\,\% G = \% C.\) Tổng số nucleotide trong gen:
\(N = A + T + G + C = 2A + 2G = 2T + 2C.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
1. Vì số nguyên tử của \({\rm{Fe}}\) và \({\rm{O}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có hệ phương trình: \(\left\{ \begin{array}{l}x = 2 \cdot 3\\x + 2y = 2 \cdot 4\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 6\\x + 2y = 8.\end{array} \right.\)
Thay \(x = 6\) vào phương trình \(x + 2y = 8,\) ta được:
\(6 + 2y = 8,\) suy ra \(2y = 2,\) nên \(y = 1.\)
Vậy \(x = 6\) và \(y = 1.\) Khi đó ta hoàn thiện phương trình phản ứng hóa học sau cân bằng như sau:
\({\rm{6FeO}} + {{\rm{O}}_2}\mathop \to \limits^{{\rm{t}}^\circ } 2{\rm{F}}{{\rm{e}}_3}{{\rm{O}}_4}.\)
2. Theo bài, hiệu giữa nucleotide loại T với loại nucleotide không bổ sung với nó là \(300\) nucleotide nên ta có phương trình: \(T - G = 300\). (1)
Theo nguyên tắc bổ sung: “\[A\] liên kết với \[T\] bằng 2 liên kết hydrogen và \[G\] liên kết với \[C\] bằng 3 liên kết hydrogen” và theo bài, gen B có \(3\,\,600\) liên kết hydrogen nên ta có phương trình \(2T + 3G = 3\,\,600\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}T - G = 300\\2T + 3G = 3\,\,600\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 3, ta được hệ \(\left\{ \begin{array}{l}3T - 3G = 900\\2T + 3G = 3\,\,600\end{array} \right.\)
Cộng từng vế hai phương trình của hệ ta được: \(5T = 4\,500,\) suy ra \(T = 900\).
Thay \(T = 900\) vào phương trình \(T - G = 300\), ta được: \(900 - G = 300,\) suy ra \(G = 600.\)
Vậy số nucleotide từng loại gen B là: \(G = C = 600\) và \(A = T = 900\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: \(a = 13.\)
Từ phương trình \[2\left( {x + y} \right) + 3\left( {x - y} \right) = 4\] ta được \[2x + 2y + 3x - 3y = 4\] hay \[5x - y = 4.\]
Từ phương trình \[\left( {x + y} \right) + 2\left( {x - y} \right) = 5\] ta được \[x + y + 2x - 2y = 5\] hay \[3x - y = 5\].

Theo bài, \(y = ax\) nên ta có \( - \frac{{13}}{2} = a \cdot \left( { - \frac{1}{2}} \right)\), suy ra \(a = 13.\)
Lời giải
Hướng dẫn giải
Đáp số: \(\widehat {C\,} \approx 22^\circ 37'.\)
Xét \(\Delta ABC\) có \(A{B^2} + B{C^2} = {5^2} + {12^2} = 169\);
\(C{A^2} = {13^2} = 169.\)
Do đó \(A{B^2} + B{C^2} = C{A^2},\) nên theo định lí Pythagore đảo ta có \(\Delta ABC\) vuông tại \(B.\)
Khi đó, ta có: \[\sin C = \frac{{AB}}{{AC}} = \frac{5}{{13}}.\]
Sử dụng MTCT, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(22^\circ 37'11.51'',\) làm tròn đến phút ta được \(22^\circ 37'.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.