Cho hệ phương trình \(\left\{ \begin{array}{l}x - y = 8\\2x + 3y = - 9\end{array} \right..\) Cho các khẳng định sau:
(i) Từ phương trình thứ nhất của hệ, biểu diễn \(y\) theo \(x,\) ta được: \(y = x - 8\).
(ii) Từ phương trình thứ nhất của hệ, biểu diễn \(x\) theo \(y,\) ta được: \(x = 8 - y.\)
(iii) Nghiệm của hệ là cặp số \(\left( {3;\,\, - 5} \right)\).
Số khẳng định đúng trong các khẳng định trên là
A. 0.
B. 1.
C. 2.
D. 3.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 9 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
⦁ Từ phương trình thứ nhất của hệ, biểu diễn \(x\) theo \(y,\) ta được: \(x = 8 + y.\)
⦁ Từ phương trình thứ nhất của hệ, biểu diễn \(y\) theo \(x,\) ta được: \(y = x - 8\).
Thế \(y = x - 8\) vào phương trình thứ hai của hệ, ta được:
\(2x + 3\left( {x - 8} \right) = - 9,\) hay \(2x + 3x - 24 = - 9\) suy ra \(5x = 15\) nên \(x = 3.\)
Thay \(x = 3\) vào phương trình \(y = x - 8\), ta được: \(y = 3 - 8 = - 5.\)
Do đó hệ phương trình có nghiệm là \(\left( {3;\,\, - 5} \right)\).
Như vậy, có 2 khẳng định đúng là (i), (iii). Ta chọn phương án C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1. Xét \(\Delta ABD\) vuông tại \(B\), ta có:

⦁ \(\sin C = \frac{{AB}}{{BC}},\) suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{9}{{\sin 32^\circ }} \approx 16,98.\)
⦁ \(AC = AB \cdot \cot C = 9 \cdot \cot 32^\circ \approx 14,40.\)
Vậy \[AC \approx 14,40\] và \[BC \approx 16,98.\]
2. Xét \(\Delta ACD\) vuông tại \(D\), ta có: \(DC = AD \cdot \tan \widehat {CAD} = AD \cdot \tan 40^\circ \).
Xét \(\Delta ABD\) vuông tại \(D\), ta có: \(DB = AD \cdot \tan \widehat {BAD} = AD \cdot \tan 50^\circ \).
Ta có: \(BC = DB - DC\)
Suy ra \(4 = AD \cdot \tan 50^\circ - AD \cdot \tan 40^\circ \)
\(4 = AD \cdot \left( {\tan 50^\circ - \tan 40^\circ } \right)\)
\(AD = \frac{4}{{\tan 50^\circ - \tan 40^\circ }}\).
Do đó \(DC = AD \cdot \tan 40^\circ = \frac{{4\tan 40^\circ }}{{\tan 50^\circ - \tan 40^\circ }} \approx 9,5{\rm{\;(m)}}{\rm{.}}\)
Như vậy, \(CH = CD + DH \approx 9,5 + 7 = 16,5{\rm{\;(m)}}{\rm{.}}\)
Vậy chiều cao của tòa nhà 2 khoảng \(16,5{\rm{\;m}}.\)
Câu 2
A. \(BC = \frac{{AC}}{{\sin B}}\).
B. \(BC = \frac{{AB}}{{\sin C}}\).
C. \(BC = \frac{{AC}}{{\cos C}}\).
D. \(AB = \frac{{AC}}{{\tan C}}\).
Lời giải
Đáp án đúng là: D
|
Xét \(\Delta ABC\) vuông tại \(A\), ta có: ⦁ \(AC = BC \cdot \sin B = BC \cdot \cos C\) nên \(BC = \frac{{AC}}{{\sin B}} = \frac{{AC}}{{\cos C}}\); ⦁ \(AB = BC \cdot \sin C\) nên \(BC = \frac{{AB}}{{\sin C}}\). ⦁ \(\cot C = \frac{{AC}}{{AB}}\) nên \(AB = \frac{{AC}}{{\cot C}}\). Vậy hệ thức ở phương án D là sai. |
|
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(A{B^2} = B{C^2} + A{C^2}\).
B. \(\cot B - \tan B = 0\).
C. \(\sin C = \cos B\).
D. \(\cot C = \frac{{AC}}{{AB}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(5\).
B. \(1\).
C. \( - 5\).
D. \( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

