Quảng cáo
Trả lời:
Đáp án đúng là: C
Nhân hai vế của bất đẳng thức \[a < b\] với 2, ta được: \[2a < 2b\].
Cộng 1 vào hai vế của bất đẳng thức \[2a < 2b\], ta được: \[2a + 1 < 2b + 1\].
Do đó dấu cần điền vào ô trống là \[ < \].
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1. Xét \(\Delta ABD\) vuông tại \(B\), ta có:

⦁ \(\sin C = \frac{{AB}}{{BC}},\) suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{9}{{\sin 32^\circ }} \approx 16,98.\)
⦁ \(AC = AB \cdot \cot C = 9 \cdot \cot 32^\circ \approx 14,40.\)
Vậy \[AC \approx 14,40\] và \[BC \approx 16,98.\]
2. Xét \(\Delta ACD\) vuông tại \(D\), ta có: \(DC = AD \cdot \tan \widehat {CAD} = AD \cdot \tan 40^\circ \).
Xét \(\Delta ABD\) vuông tại \(D\), ta có: \(DB = AD \cdot \tan \widehat {BAD} = AD \cdot \tan 50^\circ \).
Ta có: \(BC = DB - DC\)
Suy ra \(4 = AD \cdot \tan 50^\circ - AD \cdot \tan 40^\circ \)
\(4 = AD \cdot \left( {\tan 50^\circ - \tan 40^\circ } \right)\)
\(AD = \frac{4}{{\tan 50^\circ - \tan 40^\circ }}\).
Do đó \(DC = AD \cdot \tan 40^\circ = \frac{{4\tan 40^\circ }}{{\tan 50^\circ - \tan 40^\circ }} \approx 9,5{\rm{\;(m)}}{\rm{.}}\)
Như vậy, \(CH = CD + DH \approx 9,5 + 7 = 16,5{\rm{\;(m)}}{\rm{.}}\)
Vậy chiều cao của tòa nhà 2 khoảng \(16,5{\rm{\;m}}.\)
Lời giải
Hướng dẫn giải
⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có:
\[\frac{{a + c}}{{b + c}} - \frac{a}{b} = \frac{{b\left( {a + c} \right) - a\left( {b + c} \right)}}{{b\left( {b + c} \right)}} = \frac{{ab + bc - ab - ac}}{{b\left( {b + c} \right)}} = \frac{{bc - ac}}{{b\left( {b + c} \right)}} = \frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}.\]
Theo bài, \(\frac{a}{b} < 1\) nên \(\frac{{b - a}}{b} > 0\) suy ra \(b - a > 0\) (do \(b > 0)\)</>
Do đó \[\frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}} > 0\] với mọi số thực dương \(a,\,\,b,\,\,c\) thỏa mãn \(\frac{a}{b} < 1.\)
Như vậy, bất đẳng thức \(\frac{a}{b} < \frac{{a + c}}{{b + c}}\,\,\,\left( 1 \right)\) được chứng minh.
⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có: \(\frac{a}{{a + b + c}} < 1\).
Áp dụng bất đẳng thức (1) ta được \(\frac{a}{{a + b + c}} < \frac{{a + d}}{{a + b + c + d}}.\)
Tương tự, ta có: \(\frac{b}{{b + c + d}} < \frac{{b + a}}{{a + b + c + d}};\,\,\,\frac{c}{{c + d + a}} < \frac{{c + b}}{{a + b + c + d}};\,\,\,\frac{d}{{d + a + b}} < \frac{{d + a}}{{a + b + c + d}}.\)
Suy ra
\(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < \frac{{a + d}}{{a + b + c + d}} + \frac{{b + a}}{{a + b + c + d}} + \frac{{c + b}}{{a + b + c + d}} + \frac{{d + a}}{{a + b + c + d}}\)
Do đó \(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < \frac{{2\left( {a + b + c + d} \right)}}{{a + b + c + d}} = 2\). (2)
⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có: \(a + b + c < a + b + c + d\) nên \(\frac{a}{{a + b + c}} > \frac{a}{{a + b + c + d}}\).</>
Tương tự, ta có \(\frac{b}{{b + c + d}} > \frac{b}{{a + b + c + d}};\,\,\,\frac{c}{{c + d + a}} > \frac{c}{{a + b + c + d}};\,\,\,\frac{d}{{d + a + b}} > \frac{d}{{a + b + c + d}}.\)
Suy ra
\(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} > \frac{a}{{a + b + c + d}} + \frac{b}{{a + b + c + d}} + \frac{c}{{a + b + c + d}} + \frac{d}{{a + b + c + d}}\)
Do đó \(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} > \frac{{a + b + c + d}}{{a + b + c + d}} = 1\). (3)
Từ (2) và (3) suy ra \(1 < \frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < 2\).
Như vậy bất đẳng thức \(1 < \frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < 2\) đã được chứng minh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.