Câu hỏi:

05/07/2025 9

(2,0 điểm)

1. Giải các phương trình sau:

a) \[4x\left( {x + 3} \right) - 3x - 9 = 0.\]

b) \(\frac{{x + 3}}{{x + 1}} - \frac{{x - 1}}{x} = \frac{{{x^2} + 5x + 1}}{{x\left( {x + 1} \right)}}.\)

2. Giải các bất phương trình sau:

a) \[{\left( {x + 2} \right)^2}\; < {x^2} + 5x\;--3.\]

b) \(\frac{{x\left( {x + 1} \right)}}{{12}} - \frac{{x - 1}}{8} \ge \frac{{2{x^2} + 3}}{{24}} + \frac{{5x}}{6}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

1. a) \[4x\left( {x + 3} \right) - 3x - 9 = 0\]

\(4x\left( {x + 3} \right) - 3\left( {x + 3} \right) = 0\)

\(\left( {x + 3} \right)\left( {4x - 3} \right) = 0\)

\(x + 3 = 0\) hoặc \(4x - 3 = 0\)

\(x = - 3\) hoặc \(4x = 3\)

\(x = - 3\) hoặc \(x = \frac{3}{4}\).

Vậy phương trình đã cho có hai nghiệm là \(x = - 3;\) \(x = \frac{3}{4}.\)

1. b) Điều kiện xác định: \(x \ne 0\) và \(x \ne - 1.\)

\(\frac{{x + 3}}{{x + 1}} - \frac{{x - 1}}{x} = \frac{{{x^2} + 5x + 1}}{{x\left( {x + 1} \right)}}\)\(\frac{{x\left( {x + 3} \right)}}{{x\left( {x + 1} \right)}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{{{x^2} + 5x + 1}}{{x\left( {x + 1} \right)}}\)

\(x\left( {x + 3} \right) - \left( {x - 1} \right)\left( {x + 1} \right) = {x^2} + 5x + 1\)

\({x^2} + 3x - \left( {{x^2} - 1} \right) = {x^2} + 5x + 1\)

\[{x^2} + 3x - {x^2} + 1 = {x^2} + 5x + 1\]

\(3x + 1 = {x^2} + 5x + 1\)

\[{x^2} + 2x = 0\]

\[x\left( {x + 2} \right) = 0\]

\(x = 0\) hoặc \[x + 2 = 0\]

\(x = 0\) (không thỏa mãn) hoặc \[x = - 2\] (thỏa mãn).

Vậy phương trình đã cho có nghiệm là \(x = - 2.\)

2. a) \[{\left( {x + 2} \right)^2}\; < {x^2} + 5x\;--3\]

\[{x^2} + 4x + 4\; < {x^2} + 5x - 3\]

\[\left( {{x^2} - {x^2}} \right) + \left( {4x - 5x} \right) < - 3 - 4\]

\[ - x < - 7\]

\[x > 7\]

Vậy nghiệm của bất phương trình là \[x > 7.\]

2. b) \(\frac{{x\left( {x + 1} \right)}}{{12}} - \frac{{x - 1}}{8} \ge \frac{{2{x^2} + 3}}{{24}} + \frac{{5x}}{6}\)

\(\frac{{2x\left( {x + 1} \right)}}{{24}} - \frac{{3\left( {x - 1} \right)}}{{24}} \ge \frac{{2{x^2} + 3}}{{24}} + \frac{{5x \cdot 4}}{{24}}\)

\(2x\left( {x + 1} \right) - 3\left( {x - 1} \right) \ge 2{x^2} + 3 + 5x \cdot 4\)

\(2{x^2} + 2x - 3x + 3 \ge 2{x^2} + 3 + 20x\)

\[\left( {2{x^2} - 2{x^2}} \right) + \left( {2x - 3x - 20x} \right) \ge 3 - 3\]

\[ - 21x \ge 0\]

\(x \le 0\)

Vậy bất phương trình đã cho có nghiệm là \(x \le 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có:

\[\frac{{a + c}}{{b + c}} - \frac{a}{b} = \frac{{b\left( {a + c} \right) - a\left( {b + c} \right)}}{{b\left( {b + c} \right)}} = \frac{{ab + bc - ab - ac}}{{b\left( {b + c} \right)}} = \frac{{bc - ac}}{{b\left( {b + c} \right)}} = \frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}.\]

Theo bài, \(\frac{a}{b} < 1\) nên \(\frac{{b - a}}{b} > 0\) suy ra \(b - a > 0\) (do \(b > 0)\)</>

Do đó \[\frac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}} > 0\] với mọi số thực dương \(a,\,\,b,\,\,c\) thỏa mãn \(\frac{a}{b} < 1.\)

Như vậy, bất đẳng thức \(\frac{a}{b} < \frac{{a + c}}{{b + c}}\,\,\,\left( 1 \right)\) được chứng minh.

⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có: \(\frac{a}{{a + b + c}} < 1\).

Áp dụng bất đẳng thức (1) ta được \(\frac{a}{{a + b + c}} < \frac{{a + d}}{{a + b + c + d}}.\)

Tương tự, ta có: \(\frac{b}{{b + c + d}} < \frac{{b + a}}{{a + b + c + d}};\,\,\,\frac{c}{{c + d + a}} < \frac{{c + b}}{{a + b + c + d}};\,\,\,\frac{d}{{d + a + b}} < \frac{{d + a}}{{a + b + c + d}}.\)

Suy ra

\(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < \frac{{a + d}}{{a + b + c + d}} + \frac{{b + a}}{{a + b + c + d}} + \frac{{c + b}}{{a + b + c + d}} + \frac{{d + a}}{{a + b + c + d}}\)

Do đó \(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < \frac{{2\left( {a + b + c + d} \right)}}{{a + b + c + d}} = 2\). (2)

⦁ Với \(a,\,\,b,\,\,c\) là các số thực dương, ta có: \(a + b + c < a + b + c + d\) nên \(\frac{a}{{a + b + c}} > \frac{a}{{a + b + c + d}}\).</>

Tương tự, ta có \(\frac{b}{{b + c + d}} > \frac{b}{{a + b + c + d}};\,\,\,\frac{c}{{c + d + a}} > \frac{c}{{a + b + c + d}};\,\,\,\frac{d}{{d + a + b}} > \frac{d}{{a + b + c + d}}.\)

Suy ra

\(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} > \frac{a}{{a + b + c + d}} + \frac{b}{{a + b + c + d}} + \frac{c}{{a + b + c + d}} + \frac{d}{{a + b + c + d}}\)

Do đó \(\frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} > \frac{{a + b + c + d}}{{a + b + c + d}} = 1\). (3)

Từ (2) và (3) suy ra \(1 < \frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < 2\).

Như vậy bất đẳng thức \(1 < \frac{a}{{a + b + c}} + \frac{b}{{b + c + d}} + \frac{c}{{c + d + a}} + \frac{d}{{d + a + b}} < 2\) đã được chứng minh.

Lời giải

Hướng dẫn giải

1. Do đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {3;\,\, - 5} \right)\) nên thay \(x = 3,\,\,y = - 5\) vào hàm số \(y = ax + b,\) ta được: \( - 5 = 3a + b\).

Tương tự, do đường thẳng đi qua điểm \(N\left( {1;\,\,2} \right)\) nên ta có: \(2 = a + b\).

Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3a + b = - 5}\\{a + b = 2}\end{array}} \right.\).

Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:

\(2a = - 7,\) suy ra \(a = - \frac{7}{2}\).

Thay \(a = - \frac{7}{2}\) vào phương trình \(a + b = 2\), ta được:

\( - \frac{7}{2} + b = 2,\) suy ra \(b = \frac{{11}}{2}\).

Vậy \(a = - \frac{7}{2}\) và \(b = \frac{{11}}{2}\).

2. Gọi số có hai chữ số cần tìm là \(\overline {xy} {\rm{ }}\left( {x \in \mathbb{N}*,\,\,y \in \mathbb{N}*,\,\,0 < x \le 9,\,\,0 \le y \le 9} \right).\)

Nếu đổi chỗ hai chữ số của nó thì được số mới là \(\overline {yx} \).

Ta có: \(\overline {xy} = 10x + y\) và \(\overline {yx} = 10y + x\).

Theo bài, nếu đổi chỗ hai chữ số của nó thì được số mới lớn hơn số đã cho là \(63\) nên ta có phương trình: \(10y + x = \left( {10x + y} \right) + 63\) hay \( - 9x + 9y = 63\) nên \(x - y = - 7.\) (1)

Mặt khác, tổng của số đã cho và số mới tạo thành bằng \(99\) nên ta có phương trình: \(\left( {10x + y} \right) + \left( {10y + x} \right) = 99\) hay \(11x + 11y = 99\) nên \(x + y = 9.\) (2)

Từ (1) và (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}x - y = - 7\\x + y = 9.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ trên, ta được:

\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).

Thay \(x = 1\) vào phương trình \(x + y = 9,\) ta được: \(1 + y = 9,\) suy ra \(y = 8\) (thỏa mãn).

Vậy số cần tìm là \(18\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP