Câu hỏi:
06/07/2025 19
Giá trị của một ngôi nhà sau khi xây n năm được cho bởi công thức V = 6250.ean (triệu đồng) với a là một hệ số xác định. Biết khi n = 3 thì V = 8750 (triệu đồng).
a) Giá trị ban đầu của ngôi nhà là 6250000000 đồng.
b) Giá trị của a là a = 0,112 (làm tròn kết quả đến 3 chữ số sau dấy phẩy).
c) Giá trị của ngôi nhà sau 5 năm là 11000 triệu đồng (làm tròn kết quả đến hàng đơn vị).
d) Sau ít nhất 6 năm thì giá trị ngôi nhà sẽ tăng gấp đôi.
Giá trị của một ngôi nhà sau khi xây n năm được cho bởi công thức V = 6250.ean (triệu đồng) với a là một hệ số xác định. Biết khi n = 3 thì V = 8750 (triệu đồng).
a) Giá trị ban đầu của ngôi nhà là 6250000000 đồng.
b) Giá trị của a là a = 0,112 (làm tròn kết quả đến 3 chữ số sau dấy phẩy).
c) Giá trị của ngôi nhà sau 5 năm là 11000 triệu đồng (làm tròn kết quả đến hàng đơn vị).
d) Sau ít nhất 6 năm thì giá trị ngôi nhà sẽ tăng gấp đôi.
Quảng cáo
Trả lời:
a) Giá trị ban đầu của ngôi nhà ứng với n = 0
Þ V = 6250 (triệu đồng) = 6250000000 đồng.
b) Khi n = 3 thì V = 8750 triệu đồng nên 8750 = 6250e3a Û \(a = \frac{{\ln 1,4}}{3} \approx 0,112\).
c) Sau 5 năm \(V = 6250.{e^{\frac{{5\ln 1,4}}{3}}} \approx 10950\) triệu đồng.
d) Giá trị ngôi nhà tăng gấp đôi khi \({e^{\frac{{n.\ln 1,4}}{3}}} \ge 2 \Leftrightarrow n \ge \frac{{3\ln 2}}{{\ln 1,4}} \approx 6,18\).
Do n là số năm nên n ít nhất bằng 7.
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Điều kiện: 2x – 1 > 0 Û \(x > \frac{1}{2}\).
log3(2x – 1) < 2 Û 2x – 1 < 9 Û x < 5.
Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là \(S = \left( {\frac{1}{2};5} \right)\).
Lời giải
\({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).
Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.
Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:
\(\left\{ \begin{array}{l}a + b = m + 2\\ab = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a + b = m + 2\\{a^3} = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 9\\m + 2 = 12 \Leftrightarrow m = 10\end{array} \right.\).
Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.
Vậy m = 10 là giá trị cần tìm.
Trả lời: 10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho phương trình log(x2 – 3x + m) = log(x + 2). Khi đó:
a) Với m = 2 thì phương trình đã cho có hai nghiệm.
b) Với m = 2 thì điều kiện của phương trình là x > 2.
c) Với −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.
d) Với m = 2. Tổng các nghiệm của phương trình bằng 4.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho phương trình log(x2 – 3x + m) = log(x + 2). Khi đó:
a) Với m = 2 thì phương trình đã cho có hai nghiệm.
b) Với m = 2 thì điều kiện của phương trình là x > 2.
c) Với −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.
d) Với m = 2. Tổng các nghiệm của phương trình bằng 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.