Câu hỏi:
06/07/2025 17
PHẦN II. TRẢ LỜI NGẮN
Tìm giá trị của tham số m để phương trình \({\left( {\frac{1}{5}} \right)^{{x^2} - \left( {m + 2} \right)x}} = {5^{27}}\) có hai nghiệm phân biệt a và b thỏa mãn điều kiện \({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\).
PHẦN II. TRẢ LỜI NGẮN
Tìm giá trị của tham số m để phương trình \({\left( {\frac{1}{5}} \right)^{{x^2} - \left( {m + 2} \right)x}} = {5^{27}}\) có hai nghiệm phân biệt a và b thỏa mãn điều kiện \({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\).
Quảng cáo
Trả lời:
\({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).
Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.
Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:
\(\left\{ \begin{array}{l}a + b = m + 2\\ab = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a + b = m + 2\\{a^3} = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 9\\m + 2 = 12 \Leftrightarrow m = 10\end{array} \right.\).
Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.
Vậy m = 10 là giá trị cần tìm.
Trả lời: 10.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A
Điều kiện: x > 0.
\({\log _{\frac{1}{2}}}x < - 4\)\( \Leftrightarrow x > {\left( {\frac{1}{2}} \right)^{ - 4}} = 16\).
Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là S = (16; +∞).
Lời giải
D
5x < 125 Û x < 3.
Nghiệm dương của bất phương trình là x = 1; x = 2.
Câu 3
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho phương trình log(x2 – 3x + m) = log(x + 2). Khi đó:
a) Với m = 2 thì phương trình đã cho có hai nghiệm.
b) Với m = 2 thì điều kiện của phương trình là x > 2.
c) Với −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.
d) Với m = 2. Tổng các nghiệm của phương trình bằng 4.
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho phương trình log(x2 – 3x + m) = log(x + 2). Khi đó:
a) Với m = 2 thì phương trình đã cho có hai nghiệm.
b) Với m = 2 thì điều kiện của phương trình là x > 2.
c) Với −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.
d) Với m = 2. Tổng các nghiệm của phương trình bằng 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.