Câu hỏi:

06/07/2025 17

PHẦN II. TRẢ LỜI NGẮN

Tìm giá trị của tham số m để phương trình \({\left( {\frac{1}{5}} \right)^{{x^2} - \left( {m + 2} \right)x}} = {5^{27}}\) có hai nghiệm phân biệt a và b thỏa mãn điều kiện \({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 \({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).

Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.

Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:

\(\left\{ \begin{array}{l}a + b = m + 2\\ab = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a + b = m + 2\\{a^3} = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 9\\m + 2 = 12 \Leftrightarrow m = 10\end{array} \right.\).

Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.

Vậy m = 10 là giá trị cần tìm.

Trả lời: 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Điều kiện: x > 0.

\({\log _{\frac{1}{2}}}x <  - 4\)\( \Leftrightarrow x > {\left( {\frac{1}{2}} \right)^{ - 4}} = 16\).

Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là S = (16; +∞).

Câu 2

Lời giải

D

5x < 125 Û x < 3.

Nghiệm dương của bất phương trình là x = 1; x = 2.

Câu 3

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho phương trình log(x2 – 3x + m) = log(x + 2). Khi đó:

a) Với m = 2 thì phương trình đã cho có hai nghiệm.

b) Với m = 2 thì điều kiện của phương trình là x > 2.

c) Với −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.

d) Với m = 2. Tổng các nghiệm của phương trình bằng 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP