Câu hỏi:

06/07/2025 22

PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI

Cho phương trình log(x2 – 3x + m) = log(x + 2). Khi đó:

a) Với m = 2 thì phương trình đã cho có hai nghiệm.

b) Với m = 2 thì điều kiện của phương trình là x > 2.

c) Với −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.

d) Với m = 2. Tổng các nghiệm của phương trình bằng 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với m = 2 thì phương trình có dạng log(x2 – 3x + 2) = log(x + 2)

Điều kiện: \(\left\{ \begin{array}{l}{x^2} - 3x + 2 > 0\\x + 2 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x < 1\\x > 2\end{array} \right.\\x >  - 2\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - 2 < x < 1\\x > 2\end{array} \right.\)

log(x2 – 3x + 2) = log(x + 2) Û x2 – 3x + 2 = x + 2

Û x2 – 4x = 0 Û x = 0 (tmđk) hoặc x = 4 (tmđk).

Vậy phương trình có có hai nghiệm.

b) Theo câu a, điều kiện \(\left[ \begin{array}{l} - 2 < x < 1\\x > 2\end{array} \right.\).

c) Điều kiện \(\left\{ \begin{array}{l}{x^2} - 3x + m > 0\\x + 2 > 0\end{array} \right.\).

log(x2 – 3x + m) = log(x + 2) Û x2 – 3x + m = x + 2 Û x2 – 4x + m – 2 = 0

Û m = −x2 + 4x + 2 (1)

Bài toán trở thành tìm m để phương trình (1) có hai nghiệm phân biệt x > −2.

Xét hàm số g(x) =  −x2 + 4x + 2 .

Ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy −10 < m < 6 thì phương trình đã cho có hai nghiệm phân biệt.

d) Theo câu a, với m = 2 thì tổng các nghiệm của phương trình bằng 4.

Đáp án: a) Đúng;   b) Sai;   c) Đúng;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Điều kiện: 2x – 1 > 0 Û \(x > \frac{1}{2}\).

log3(2x – 1) < 2 Û 2x – 1 < 9 Û x < 5.

Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là \(S = \left( {\frac{1}{2};5} \right)\).

Lời giải

 \({\log _a}\left( {{b^{{{\log }_a}b}}} \right) - 2{\log _{\sqrt a }}b + 4 = 0\) \( \Leftrightarrow {\left( {{{\log }_a}b} \right)^2} - 4{\log _a}b + 4 = 0\)\( \Leftrightarrow {\log _a}b = 2 \Leftrightarrow b = {a^2}\).

Vậy ta cần tìm m để phương trình x2 – (m + 2)x + 27 = 0 có hai nghiệm a, b dương phân biệt khác 1 và thỏa mãn b = a2.

Giả sử phương trình có hai nghiệm a, b theo định lý Viet ta có:

\(\left\{ \begin{array}{l}a + b = m + 2\\ab = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a + b = m + 2\\{a^3} = 27\\{a^2} = b\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 9\\m + 2 = 12 \Leftrightarrow m = 10\end{array} \right.\).

Thử lại m =10 ta thấy phương trình x2 – 12x + 27 = 0 có hai nghiệm 3; 9 thỏa mãn yêu cầu bài toán.

Vậy m = 10 là giá trị cần tìm.

Trả lời: 10.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP