Câu hỏi:

06/07/2025 47 Lưu

Trong các khẳng định dưới đây. Tìm khẳng định đúng.

A. \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}\).     
B. (C)' = C, C là hằng số.     
C. Hệ số góc của tiếp tuyến tạo điểm M(x0; f(x0)): f(x).     
D. Phương trình tiếp tuyến của đồ thị hàm số tại M(x0; f(x0)): y = f'(x)(x – x0) + f(x0).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A

Ta có (C)' = 0.

Hệ số góc của tiếp tuyến tạo điểm M(x0; f(x0)): f(x0).

Phương trình tiếp tuyến của đồ thị hàm số tại M(x0; f(x0)): y = f'(x0)(x – x0) + f(x0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

A

Ta có s'(t) = 3t2 – 6t + 9.

Vận tốc của chất điểm v(t) = s'(t) = 3t2 – 6t + 9 = 3(t – 1)2 + 6 ≥ 6.

Dấu “=” xảy ra khi và chỉ khi t = 1.

Câu 2

A. 2 m/s.                       
B. 3 m/s.                       
C. 4 m/s.                                    
D. 5 m/s.

Lời giải

C

Ta tính được s'(t) = 2t.

Vận tốc của chất điểm v(t) = s'(t) = 2t Þ v(2) = 2.2 = 4 m/s.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\).                  
B. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x + 1}}{{x - 1}}\).                                       
C. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 1}}{{x + 1}}\).            
D. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x + 1}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. −4.                            
B. 4.                              
C. 2.  
D. −2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP