Câu hỏi:

06/07/2025 45 Lưu

Viết phương trình tiếp tuyến của đường cong \(y = \frac{1}{x}\) tại điểm có hoành độ bằng −1.     

A. x + y + 2 = 0.           
B. y = x + 2.                  
C. y = x – 2.  
D. y = −x + 2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A

Ta có \(y' =  - \frac{1}{{{x^2}}}\). Hệ số góc của tiếp tuyến là \(k = y'\left( { - 1} \right) =  - 1\).

Với x0 = −1 Þ y0 = −1.

Khi đó phương trình tiếp tuyến của đồ thị hàm số y = −(x + 1) – 1 = −x – 2 Û x + y + 2 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

A

Ta có s'(t) = 3t2 – 6t + 9.

Vận tốc của chất điểm v(t) = s'(t) = 3t2 – 6t + 9 = 3(t – 1)2 + 6 ≥ 6.

Dấu “=” xảy ra khi và chỉ khi t = 1.

Câu 2

A. 2 m/s.                       
B. 3 m/s.                       
C. 4 m/s.                                    
D. 5 m/s.

Lời giải

C

Ta tính được s'(t) = 2t.

Vận tốc của chất điểm v(t) = s'(t) = 2t Þ v(2) = 2.2 = 4 m/s.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\).                  
B. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x + 1}}{{x - 1}}\).                                       
C. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 1}}{{x + 1}}\).            
D. \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x + 1}}{{x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. −4.                            
B. 4.                              
C. 2.  
D. −2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP