Một người gửi tiết kiệm khoản tiền 100 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Tính tổng số tiền vốn và lãi mà người đó nhận được sau 1 năm, nếu tiền lãi được tính theo thể thức: Lãi kép với kì hạn 6 tháng (đơn vị: triệu đồng).
Một người gửi tiết kiệm khoản tiền 100 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Tính tổng số tiền vốn và lãi mà người đó nhận được sau 1 năm, nếu tiền lãi được tính theo thể thức: Lãi kép với kì hạn 6 tháng (đơn vị: triệu đồng).
Quảng cáo
Trả lời:
Tổng số tiền vốn và lãi người đó nhận được sau 1 năm là:
\(T = 100000000.{\left( {1 + \frac{{0,07}}{2}} \right)^2} \approx 107\) triệu đồng.
Trả lời: 107.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A
Ta có s'(t) = 3t2 – 6t + 9.
Vận tốc của chất điểm v(t) = s'(t) = 3t2 – 6t + 9 = 3(t – 1)2 + 6 ≥ 6.
Dấu “=” xảy ra khi và chỉ khi t = 1.
Lời giải
A
Ta có f(1) = 12 + 2.1 = 3.
Khi đó theo định nghĩa \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + 2x - 3}}{{x - 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.