Câu hỏi:
06/07/2025 6
Cho tứ diện ABCD có AC = 6, BD = 8 có AC ^ BD. Gọi M, N lần lượt là trung điểm của AD, BC. Tính độ dài đoạn thẳng MN.
Cho tứ diện ABCD có AC = 6, BD = 8 có AC ^ BD. Gọi M, N lần lượt là trung điểm của AD, BC. Tính độ dài đoạn thẳng MN.
Quảng cáo
Trả lời:
Gọi P là trung điểm của CD.
Ta có MP // AC và NP // BD.
Mà AC ^ BD nên MP ^ NP hay tam giác MNP vuông tại P.
Lại có \(MP = \frac{1}{2}AC = 3;NP = \frac{1}{2}BD = 4\).
Suy ra \(MN = \sqrt {M{P^2} + N{P^2}} = \sqrt {{3^2} + {4^2}} = 5\).
Trả lời: 5.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
D
Ta có IJ là đường trung bình của DSBC nên IJ // SB.
Vì IJ // SB và CD // AB nên (IJ, CD) = (SB, AB) = \(\widehat {SBA} = 60^\circ \) (do DSAB đều).
Lời giải
D
Gọi O là tâm của hình thoi ABCD Þ OJ là đường trung bình của DBCD.
Suy ra \(\left\{ \begin{array}{l}OJ//CD\\OJ = \frac{1}{2}CD\end{array} \right.\).
Vì CD // OJ Þ (IJ, CD) = (IJ, OJ).
Vì \(IJ = \frac{1}{2}SB = \frac{a}{2};OJ = \frac{1}{2}CD = \frac{a}{2};OI = \frac{1}{2}SA = \frac{a}{2}\) nên DIOJ đều.
Suy ra (IJ, CD) = (IJ, OJ) = \(\widehat {IJO} = 60^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.