Hình chóp S.ABCD có cạnh SA ^ (ABCD) và đáy ABCD là hình vuông cạnh 2 cm, SA = 1 cm. Tính độ dài cạnh SC (đơn vị cm).
Hình chóp S.ABCD có cạnh SA ^ (ABCD) và đáy ABCD là hình vuông cạnh 2 cm, SA = 1 cm. Tính độ dài cạnh SC (đơn vị cm).
Quảng cáo
Trả lời:

Vì SA ^ (ABCD) nên SA ^ AC Þ DSAC vuông tại A.
Vì ABCD là hình vuông cạnh 2 cm nên AC \( = 2\sqrt 2 \).
Xét DSAC có \(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{1^2} + {{\left( {2\sqrt 2 } \right)}^2}} = 3\) (cm).
Trả lời: 3.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
D

Ta có \(\left. \begin{array}{l}BC \bot SB,BC \bot AB\\SB,AB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\).
Câu 2
Lời giải
C

Do DABC vuông tại B nên BC ^ AB và SA ^ BC (do SA ^ (ABC)).
Suy ra BC ^ (SAB).
Mà IJ // BC (vì IJ là đường trung bình của DSBC). Suy ra IJ ^ (SAB).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.