Câu hỏi:

07/07/2025 18 Lưu

Cho hình chóp tam giác S.ABC có SA ^ (ABC), \(SA = a\sqrt 3 \), đáy là tam giác đều cạnh 2a. Tính góc phẳng nhị diện [S, BC, A]. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A

Cho hình chóp tam giác S.ABC có SA ^ (ABC), \(SA = a\sqrt 3 \), đáy là tam giác đều cạnh 2a. Tính góc phẳng nhị diện [S, BC, A].  	 (ảnh 1)

Gọi M là trung điểm của cạnh BC Þ AM ^ BC, \(AM = a\sqrt 3 \).

Ta có \(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAM} \right) \Rightarrow SM \bot BC.\)

Có SM ^ BC, mặt khác AM ^ BC suy ra \(\widehat {SMA}\) là góc phẳng nhị diện [S, BC, A].

Xét DSAM vuông tại A, ta có:

\(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1 \Rightarrow \widehat {SMA} = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy ABCD. Khẳng định nào sau đây sai?  (ảnh 1)

Do hình chóp tứ giác đều S.ABCD có O là tâm của đáy ABCD nên SO ^ (ABCD) Þ SO ^ BD.

Ta có BD ^ AC mà SO ^ BD nên BD ^ (SAC) Þ \(\left\{ \begin{array}{l}\left( {SBD} \right) \bot \left( {SAC} \right)\\BD \bot SA\end{array} \right.\).

Câu 2

Lời giải

D

Số đo của góc giữa (SBC) và (ABCD) là  	 (ảnh 1)

Có BC ^ SA (do SA ^ (ABCD)) và BC ^ AB (do ABCD là hình vuông).

Suy ra BC ^ (SAB) Þ BC ^ SB.

Nên ((SBC), (ABCD)) = (SB, AB) = \(\widehat {SBA}\).

Xét DSAB vuông tại A, có \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 3 }}{{3a}} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {SBA} = 30^\circ \).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP