Câu hỏi:
07/07/2025 17
PHẦN II. TRẢ LỜI NGẮN
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với đường chéo \(AC = 2\sqrt 2 \), SA ^ (ABCD). Tính khoảng cách giữa hai đường thẳng SB và CD.
PHẦN II. TRẢ LỜI NGẮN
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với đường chéo \(AC = 2\sqrt 2 \), SA ^ (ABCD). Tính khoảng cách giữa hai đường thẳng SB và CD.
Quảng cáo
Trả lời:
Vì SA ^ (ABCD) Þ SA ^ DA mà DA ^ AB nên DA ^ (SAB).
Lại có CD // AB nên CD // (SAB).
Suy ra d(SB, CD) = d(CD, (SAB)) = d(D, (SAB)) = DA.
Tứ giác ABCD là hình vuông với đường chéo \(AC = 2\sqrt 2 \) Þ DA = 2.
Trả lời: 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
D
Do hình chóp tứ giác đều S.ABCD có O là tâm của đáy ABCD nên SO ^ (ABCD) Þ SO ^ BD.
Ta có BD ^ AC mà SO ^ BD nên BD ^ (SAC) Þ \(\left\{ \begin{array}{l}\left( {SBD} \right) \bot \left( {SAC} \right)\\BD \bot SA\end{array} \right.\).
Lời giải
D
Có BC ^ SA (do SA ^ (ABCD)) và BC ^ AB (do ABCD là hình vuông).
Suy ra BC ^ (SAB) Þ BC ^ SB.
Nên ((SBC), (ABCD)) = (SB, AB) = \(\widehat {SBA}\).
Xét DSAB vuông tại A, có \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 3 }}{{3a}} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {SBA} = 30^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.