A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
Dãy số nào sau đây không phải là dãy các số hữu tỉ?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Xét các đáp án, nhận thấy:
• Dãy gồm các số \( - 0,5;{\rm{ 3}}\frac{1}{5};{\rm{ }} - 2,75;{\rm{ 10}}\) là dãy chỉ chứa các số hữu tỉ.
• Dãy gồm các số \(\frac{0}{3};{\rm{ }}\frac{{ - 1}}{6};{\rm{ 75\% ; }} - 10\) là dãy chỉ chứa các số hữu tỉ \(\left( {{\rm{75\% }} = 0,75} \right)\).
• Dãy gồm các số \(\sqrt 4 ;{\rm{ }}0;{\rm{ }}75\% ;{\rm{ }}5,12\) là dãy chỉ chứa các các số hữu tỉ \(\left( {\sqrt 4 = \sqrt {{2^2}} = 2} \right)\).
• Dãy gồm các số \( - 3\frac{1}{5};{\rm{ }}\frac{3}{4};{\rm{ }}\sqrt 3 ;{\rm{ }} - 10\) có \(\sqrt 3 \) là số vô tỉ.
Do đó, chọn đáp án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: \(35\)
Vì \(xy\parallel mn\) nên \(\widehat {xAB} = \widehat {ABn} = 70^\circ \) (so le trong).
Ta có tia \(BC\) là tia phân giác của \(\widehat {ABn}\) nên \(\widehat {ABC} = \widehat {CBn} = \widehat {\frac{{ABn}}{2}} = 35^\circ \).
Vì \(xy\parallel mn\) nên \(\widehat {ACB} = \widehat {CBn} = 35^\circ \).
Lời giải
Hướng dẫn giải
Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)
\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)
\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)
\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)
\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)
\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)
\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)
Nhận thấy \(3S < 1\).
Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)
\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)
\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)
\(3A = 4 - \frac{1}{{{4^{2022}}}}\)
Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).
Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)
Vậy \(S < \frac{1}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.