Câu hỏi:

17/07/2025 133 Lưu

Hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác có chung đặc điểm nào dưới đây?

A. Đều có 6 măt.

B. Đều có 8 đỉnh.

C. Các mặt đáy song song với nhau.

D. Mỗi đỉnh có 3 góc vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Nhận thấy các hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác có đặc điểm chung là các mặt đáy đều song song với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đ  b) Đ    c) S   d) S

• Diện tích được quét vôi của cái gờ là: \(\left( {0,25 + 0,6 + 0,65} \right).0,9 = 1,35\) (m2).

Do đó, ý a) là đúng.

• Thể tích của cái gờ đó là: \(\frac{1}{2}.0,6.0,25.0,9 = 0,0675\) (m3)

Do đó, ý b) là đúng.

• Đổi \(0,0675{\rm{ }}{{\rm{m}}^3} = 67,5{\rm{ d}}{{\rm{m}}^3}\).

Do đó, số tiền để đổ bê tông cho cái gờ đó là: \(67,5.50{\rm{ }}000 = 3{\rm{ }}375{\rm{ }}000\) (đồng).

Do đó, ý c) là sai.

• Vậy tổng số tiền ông An phải trả là: \(3{\rm{ }}375{\rm{ }}000 + 300{\rm{ }}000 = 3{\rm{ }}675{\rm{ }}000\) (đồng).

Do đó, ý d) là sai.

Lời giải

Hướng dẫn giải

Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)

\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)

\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)

\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)

\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)

Nhận thấy \(3S < 1\).

Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)

\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)

\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)

\(3A = 4 - \frac{1}{{{4^{2022}}}}\)

Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).

Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)

Vậy \(S < \frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP