Câu hỏi:

17/07/2025 54 Lưu

Phân số nào dưới đây viết được dưới dạng số thập phân vô hạn tuần hoàn?

A. \(\frac{{15}}{{42}}.\)

B. \(\frac{{19}}{4}.\)

C. \(\frac{5}{8}.\)

D. \(\frac{8}{{25}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét các đáp án:

• Ta có \(\frac{{15}}{{42}}\) có mẫu số \(42 = 2.3.7\) do đó phân số viết được dưới dạng số thập phân vô hạn tuần hoàn.

• Ta có \(\frac{{19}}{4}\) có mẫu số \(4 = {2^2}\) do đó phân số viết được dưới dạng số thập phân hữu hạn.

• Ta có \(\frac{5}{8}\) có mẫu số \(8 = {2^3}\), do đó phân số viết được dưới dạng số thập phân hữu hạn.

• Ta có \(\frac{8}{{25}}\) có mẫu số \(25 = {5^2}\), do đó phân số viết được dưới dạng số thập phân hữu hạn.

Vậy chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đ  b) Đ    c) S   d) S

• Diện tích được quét vôi của cái gờ là: \(\left( {0,25 + 0,6 + 0,65} \right).0,9 = 1,35\) (m2).

Do đó, ý a) là đúng.

• Thể tích của cái gờ đó là: \(\frac{1}{2}.0,6.0,25.0,9 = 0,0675\) (m3)

Do đó, ý b) là đúng.

• Đổi \(0,0675{\rm{ }}{{\rm{m}}^3} = 67,5{\rm{ d}}{{\rm{m}}^3}\).

Do đó, số tiền để đổ bê tông cho cái gờ đó là: \(67,5.50{\rm{ }}000 = 3{\rm{ }}375{\rm{ }}000\) (đồng).

Do đó, ý c) là sai.

• Vậy tổng số tiền ông An phải trả là: \(3{\rm{ }}375{\rm{ }}000 + 300{\rm{ }}000 = 3{\rm{ }}675{\rm{ }}000\) (đồng).

Do đó, ý d) là sai.

Lời giải

Hướng dẫn giải

a) Nhận thấy, \(\widehat {FDC} = \widehat {DCz} = 135^\circ \) (giả thiết)

Mà hai góc ở vị trí so le trong nên \(Cz\parallel Dy.\)

b) Vì \(Dy\parallel Bx\) và \({\rm{ }}Dy \bot BF\) nên \({\rm{ }}Bx \bot BF\) tại \(B.\)

Suy ra \(\widehat {FBx} = 90^\circ \).

Nhận thấy \(\widehat {FBC}\) và \(\widehat {CBx}\) là hai góc kề nhau nên \(\widehat {FBC} + \widehat {CBx} = \widehat {FBx}\) hay \(\widehat {FBC} + 45^\circ = 90^\circ \).

Suy ra \(\widehat {FBC} = 90^\circ - 45^\circ = 45^\circ \).

Do đó, \(\widehat {FBC} = \widehat {CBx}\) và tia \(BC\) nằm giữa hai tia \(BF,Bx\) nên \(BC\) là tia phân giác của \(\widehat {FBx}.\)

c)

(1,5 điểm) Cho hình vẽ bên , biết:   ˆ F D C = 135 ∘ ; ˆ C B x = 45 ∘ ; ˆ D C z = 135 ∘ , D y ∥ B x , D y ⊥ B F   tại điểm   F .      a) Chứng minh   C z ∥ D y .    b) Chứng minh   B C   là tia phân giác của   ˆ F B x .    c) Kẻ tia   C t   là tia đối của tia   C z  . Chứng minh   C t   là tia phân giác của   ˆ D C B  . (ảnh 2)

Có tia \(Ct\) là tia đối của tia \(Cz\) nên \(\widehat {tCz}\) là góc bẹt.

Có \(\widehat {tCD}\) và \(\widehat {DCz}\) là hai góc kề bù nên \(\widehat {tCD} + \widehat {DCz} = 180^\circ \) hay \(\widehat {tCD} + 135^\circ = 180^\circ \).

Suy ra \(\widehat {tCD} = 180^\circ - 135^\circ = 45^\circ \).

Vì \(Cz\parallel Dy\) và \(Dy\parallel Bx\) nên \(Cz\parallel Bx\). Do đó, \(Bx\parallel Ct\).

Suy ra \(\widehat {CBx} = \widehat {BCt} = 45^\circ \) (so le trong)

Do đó, \(\widehat {DCt} = \widehat {BCt} = 45^\circ \).

Mà \(Ct\) là tia nằm giữa hai tia \(CD\) và \(CB\).

Do đó, \(Ct\) là tia phân giác của \(\widehat {DCB}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Đều có 6 măt.

B. Đều có 8 đỉnh.

C. Các mặt đáy song song với nhau.

D. Mỗi đỉnh có 3 góc vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{a}{b} = \frac{{2024}}{{2025}}.\)

B. \(\frac{{2024}}{a} = \frac{{2025}}{b}.\)

C. \(\frac{a}{{2025}} = \frac{b}{{2024}}.\)

D. \(\frac{b}{{2025}} = \frac{a}{{2024}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP