Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai
Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai
Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Một cửa hàng nhập về 100 cái áo với giá gốc \(200{\rm{ }}000\) đồng/cái. Cửa hàng đã bán 60 cái áo với giá mỗi cái lãi \(25\% \) so với giá gốc; 40 cái còn lại bán lỗ \(5\% \) so với giá gốc.
a) Khi bán 60 cái đầu, mỗi cái áo lãi \(50{\rm{ }}000\) đồng.
b) Khi bán 40 cái còn lại, mỗi cái lỗ \(10{\rm{ }}000\) đồng.
c) Số tiền thu về khi bán 100 cái áo nhỏ hơn \(22\) triệu đồng.
d) Cửa hàng đã lãi \(1,5\) triệu đồng.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đ b) Đ c) Đ d) S
• Khi bán 60 cái áo đầu, mỗi cái áo lãi số tiền là: \(200{\rm{ }}000.25\% = 50{\rm{ }}000\) (đồng).
Do đó, ý a) đúng.
• Khi bán 40 cái áo còn lại, mỗi cái cửa hàng lỗ số tiền là: \(200{\rm{ }}000.5\% = 10{\rm{ }}000\) (đồng).
Do đó, ý b) đúng.
• Số tiền lãi thu về khi bán 60 cái áo đầu tiên là: \(25{\rm{ }}000.60 = 1{\rm{ }}500{\rm{ }}000\) (đồng).
Số tiền cửa hàng nhập 100 chiếc áo về là: \(200{\rm{ }}000.100 = 20{\rm{ }}000{\rm{ }}000\) (đồng).
Số tiền cửa hàng bán lỗ 40 chiếc áo còn lại là: \(10{\rm{ }}000.40 = 400{\rm{ 000}}\) (đồng).
Do đó, số tiền thực tế của hàng thu về khi bán 100 chiếc áo là:
\(20{\rm{ }}000{\rm{ }}000 + 1{\rm{ }}500{\rm{ }}000 - 400{\rm{ }}000 = 21{\rm{ }}100{\rm{ }}000\) (đồng)
Do đó, ý c) là đúng.
• Số tiền cửa hàng đã lãi là: \(21{\rm{ }}100{\rm{ }}000 - 20{\rm{ }}000{\rm{ }}000 = 1{\rm{ }}100{\rm{ }}000\) (đồng).
Do đó, ý d) là sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án: \(35\)
Vì \(xy\parallel mn\) nên \(\widehat {xAB} = \widehat {ABn} = 70^\circ \) (so le trong).
Ta có tia \(BC\) là tia phân giác của \(\widehat {ABn}\) nên \(\widehat {ABC} = \widehat {CBn} = \widehat {\frac{{ABn}}{2}} = 35^\circ \).
Vì \(xy\parallel mn\) nên \(\widehat {ACB} = \widehat {CBn} = 35^\circ \).
Lời giải
Hướng dẫn giải
Ta có: \(S = \frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}\)
\(4S = 4\left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)
\(4S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}}\)
\(4S - S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \left( {\frac{1}{4} + \frac{2}{{{4^2}}} + \frac{3}{{{4^3}}} + \frac{4}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2023}}}}} \right)\)
\(3S = 1 + \frac{2}{4} + \frac{3}{{{4^2}}} + \frac{4}{{{4^3}}} + \frac{5}{{{4^4}}} + .... + \frac{{2023}}{{{4^{2022}}}} - \frac{1}{4} - \frac{2}{{{4^2}}} - \frac{3}{{{4^3}}} - \frac{4}{{{4^4}}} - .... - \frac{{2023}}{{{4^{2023}}}}\)
\(3S = 1 + \left( {\frac{2}{4} - \frac{1}{4}} \right) + \left( {\frac{3}{{{4^2}}} - \frac{2}{{{4^2}}}} \right) + \left( {\frac{4}{{{4^3}}} - \frac{3}{{{4^3}}}} \right) + \left( {\frac{5}{{{4^4}}} - \frac{4}{{{4^4}}}} \right) + .... + \left( {\frac{{2023}}{{{4^{2022}}}} - \frac{{2022}}{{{4^{2022}}}}} \right) - \frac{{2023}}{{{4^{2023}}}}\)
\(3S = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}} - \frac{{2023}}{{{4^{2023}}}}\)
Nhận thấy \(3S < 1\).
Đặt \(A = 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}\)
\(4A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}}\)
\(4A - A = 4 + 1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2021}}}} - \left( {1 + \frac{1}{4} + \frac{1}{{{4^2}}} + \frac{1}{{{4^3}}} + \frac{1}{{{4^4}}} + .... + \frac{1}{{{4^{2022}}}}} \right)\)
\(3A = 4 - \frac{1}{{{4^{2022}}}}\)
Nhận thấy \(4 - \frac{1}{{{4^{2022}}}} < 4\) hay \(3A < 4\) suy ra \(A < \frac{4}{3}\).
Do đó, \(3S < A\) nên \(S < \frac{A}{3}\) hay \(S < \frac{4}{9} < \frac{4}{8} = \frac{1}{2}.\)
Vậy \(S < \frac{1}{2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.