Tìm tất cả giá trị của tham số \(m\) để điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\).
Tìm tất cả giá trị của tham số \(m\) để điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình bậc nhất hai ẩn \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\).
Quảng cáo
Trả lời:

Đáp án đúng là: C
Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì
\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne - 1\).
Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.
Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).
Mà \(m \ne - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:
do
Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].
Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.
Đáp án: 11.
Lời giải
Gọi \(x\), \(y\) lần lượt là số xe loại \(A\) và loại \(B\) cần nhập ( \(x,y \in \mathbb{N}\)).
Tổng số tiền nhập xe là: \(30000000x + 50000000y\) đồng.
Số tiền dùng để nhập xe không quá 4 tỉ đồng, tức là:
\[30000000x + 50000000y \le 4000000000 \Leftrightarrow 3x + 5y \le 400\,\left( * \right)\].
Thay \(x = 70,y = 40\) vào bất phương trình \[\left( * \right)\] ta có: \[410 \le 400\] (vô lý).
Thay \(x = 73,y = 37\) vào bất phương trình \[\left( * \right)\] ta có: \[404 \le 400\] (vô lý).
Thay \(x = 78,y = 32\) vào bất phương trình \[\left( * \right)\] ta có: \[394 \le 400\] (đúng).
Thay \(x = 67,y = 43\) vào bất phương trình \[\left( * \right)\] ta có: \[416 \le 400\] (vô lý).
Vậy trong trường hợp cửa hàng nhập \(78\) xe loại \(A\) và \(32\) xe loại \(B\) thì số tiền dùng để nhập xe không quá 4 tỉ đồng.
Vậy \(m = 78\,;\,\,n = 32 \Rightarrow m + n = 78 + 32 = 110\).
Đáp án: 110.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.