An thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho An 200000 đồng để mua trái cây. Biết rằng giá cam là 15000 đồng/ 1 kg, giá xoài là 30000 đồng/1 kg. Gọi
lần lượt là số kilogam cam và xoài mà An có thể mua về sử dụng trong một tuần.
a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng với \(\left( {x,y > 0} \right)\).
a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng với \(\left( {x,y > 0} \right)\).
Quảng cáo
Trả lời:

Câu hỏi cùng đoạn
Câu 2:
b) Bất phương trình bậc nhất cho hai ẩn \(x,y\) là \(3x + 6y \ge 40\).
b) Bất phương trình bậc nhất cho hai ẩn \(x,y\) là \(3x + 6y \ge 40\).

b) Sai. Ta có bất phương trình: \(15000x + 30000y \le 200000 \Leftrightarrow 3x + 6y \le 40\,\,\,\,\,\left( * \right)\).
Câu 3:
c) Cặp số \(\left( {5;4} \right)\) thỏa mãn bất phương trình bậc nhất cho hai ẩn \(x,y\).
c) Cặp số \(\left( {5;4} \right)\) thỏa mãn bất phương trình bậc nhất cho hai ẩn \(x,y\).

c) Đúng. Xét \(x = 5,y = 4\) thay vào bất phương trình: \(3.5 + 6.4 \le 40\) (đúng) nên \(\left( {5\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\).
Câu 4:
d) An có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.
d) An có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.

Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:
do
Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].
Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.
Đáp án: 11.
Lời giải
Đáp án đúng là: C
Gọi \(x,\,y\) lần lượt là số vở bạn Lan có thể mua ().
Theo bài ra ta có: \(3x + 4y \le 15\).
Ta lấy gốc tọa độ \(O\left( {0;\,0} \right)\) và tính \(3.0 + 4.0 - 15 \le 0\).
Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ là đường thẳng \(d\) chứa gốc tọa độ \(O\), kể cả đường thẳng \(d\) (miền nghiệm là miền không bị gạch sọc)

Vì \(x,y \ge 1\) nên các cặp \(\left( {x,\,y} \right)\) thoả mãn là \(\left( {1,1} \right);\,\left( {1,\,2} \right);\,\left( {1,\,3} \right);\,\left( {2,1} \right);\,\left( {2,2} \right);\,\left( {3,\,1} \right)\).
Vậy bạn Lan có thể mua được nhiều nhất 4 quyển vở sao cho có cả hai loại.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
C. \(3x - 2y > 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.