Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ A thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ B thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20. Gọi x, y theo thứ tự là số lần người chơi chọn được chữ A và chữ B.
a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).
Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ A thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ B thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20. Gọi x, y theo thứ tự là số lần người chơi chọn được chữ A và chữ B.
a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).
Quảng cáo
Trả lời:
a) Đúng. Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ .\(B\). là \(y\).
Câu hỏi cùng đoạn
Câu 2:
b) Bất phương trình bậc nhất hai ẩn \(x,y\) trong tình huống người chơi chiến thắng là \(3x - y \ge 18\)
b) Bất phương trình bậc nhất hai ẩn \(x,y\) trong tình huống người chơi chiến thắng là \(3x - y \ge 18\)
Lời giải của GV VietJack
b) Sai. Với \(x,y \in \mathbb{N}\), ta có bất phương trình: \(3x - y \ge 20\,\,\,\,\,\left( * \right)\).
Câu 3:
c) Người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
c) Người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
Lời giải của GV VietJack
c) Đúng. Thay cặp số \(\left( {7\,;\,1} \right)\) vào bất phương trình \(\left( * \right):3.7 - 1 \ge 20\) (đúng) suy ra \(\left( {7\,;\,1} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
Câu 4:
d) Người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 3 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
d) Người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 3 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
Lời giải của GV VietJack
d) Sai. Thay cặp số \(\left( {8\,;\,4} \right)\) vào bất phương trình \(\left( * \right):3.8 - 4 \ge 20\) (đúng) suy ra \(\left( {8\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bất phương trình biểu diễn số tập và bút có thể mua được phụ thuộc vào số tiền mang theo là \(8000x + 6000y \le 150000\).
Bạn Lan có thể mua được tối đa số quyển tập nếu bạn đã mua 10 cây bút là \(8000x + 6000.10 \le 150000 \Leftrightarrow x \le 11,25\).
Vì \(x\) nguyên dương nên số quyển tập tối đa bạn Lan mua được là 11 quyển.
Đáp án: 11.
Lời giải
Gọi \(x\), \(y\) lần lượt là số xe loại \(A\) và loại \(B\) cần nhập ( \(x,y \in \mathbb{N}\)).
Tổng số tiền nhập xe là: \(30000000x + 50000000y\) đồng.
Số tiền dùng để nhập xe không quá 4 tỉ đồng, tức là:
\[30000000x + 50000000y \le 4000000000 \Leftrightarrow 3x + 5y \le 400\,\left( * \right)\].
Thay \(x = 70,y = 40\) vào bất phương trình \[\left( * \right)\] ta có: \[410 \le 400\] (vô lý).
Thay \(x = 73,y = 37\) vào bất phương trình \[\left( * \right)\] ta có: \[404 \le 400\] (vô lý).
Thay \(x = 78,y = 32\) vào bất phương trình \[\left( * \right)\] ta có: \[394 \le 400\] (đúng).
Thay \(x = 67,y = 43\) vào bất phương trình \[\left( * \right)\] ta có: \[416 \le 400\] (vô lý).
Vậy trong trường hợp cửa hàng nhập \(78\) xe loại \(A\) và \(32\) xe loại \(B\) thì số tiền dùng để nhập xe không quá 4 tỉ đồng.
Vậy \(m = 78\,;\,\,n = 32 \Rightarrow m + n = 78 + 32 = 110\).
Đáp án: 110.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.