Câu hỏi:

19/08/2025 157 Lưu

Một công ty viễn thông tính phí 1 nghìn đồng mỗi phút gọi nội mạng và 2 nghìn đồng mỗi phút gọi ngoại mạng. Gọi x và y lần lượt là số phút gọi nội mạng, ngoại mạng của Bình trong một tháng. Bình muốn số tiền phải trả cho tồng đài luôn thấp hơn 100 nghìn đồng.

a) Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng) với điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Số tiền phải trả cho cuộc gọi nội mạng mỗi tháng là \(x\) (nghìn đồng), số tiền phải trả cho cuộc gọi ngoại mạng mỗi tháng là \(2y\) (nghìn đồng) với điều kiện: \(x \in \mathbb{N},y \in \mathbb{N}\).

Câu hỏi cùng đoạn

Câu 2:

b) Bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là \[x + 2y < 100\].

Xem lời giải

verified Giải bởi Vietjack

b) Đúng. Ta có bất phương trình: \(x + 2y < 100\,\,\,\left( * \right)\).

Câu 3:

c) \(x = 50,y = 20\) nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho.

Xem lời giải

verified Giải bởi Vietjack

c) Đúng. Xét \(x = 50,y = 20\) thay vào \(\left( * \right):50 + 2.20 < 100\) (đúng) suy ra \(\left( {50\,;\,20} \right)\) là một nghiệm của \(\left( * \right)\).

Câu 4:

d) Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số \(x,y\) đã cho là một hình vuông.

Xem lời giải

verified Giải bởi Vietjack

d) Sai. Biểu diễn miền nghiệm của \(\left( * \right)\) trên mặt phẳng tọa độ: Vẽ đường thẳng \(x + 2y = 100\)

Ta thấy điểm \(O\left( {0\,;\,0} \right)\) thuộc miền nghiệm của \(\left( * \right)\)do thay tọa độ \(O\) vào \(\left( * \right)\): \(0 < 100\) (đúng).

Vậy miền nghiệm của bất phương trình \(\left( * \right):x + 2y < 100\) là nửa mặt phẳng (không kể d) có chứa điểm \(O\) (phần không gạch chéo trên hình).

Miền nghiệm của bất phương trình bậc nhất gồm hai ẩn số x, y đã cho là một hình vuông (ảnh 1)

Trong thực tế, vì \(x \in \mathbb{N},y \in \mathbb{N}\) nên ta chỉ xét miền nghiệm bất phương trình ứng với miền tam giác \(OAB\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:

2m02+3n0210m025n021035m05103n0103 do m0,n0m02;1;0;1;2n01;0;1

Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].

Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.

Đáp án: 11.

Lời giải

Đáp án đúng là: C

Gọi \(x,\,y\) lần lượt là số vở bạn Lan có thể mua ().

Theo bài ra ta có: \(3x + 4y \le 15\).

Ta lấy gốc tọa độ \(O\left( {0;\,0} \right)\) và tính \(3.0 + 4.0 - 15 \le 0\).

Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ là đường thẳng \(d\) chứa gốc tọa độ \(O\), kể cả đường thẳng \(d\) (miền nghiệm là miền không bị gạch sọc)

Bạn Lan có 15 nghìn đồng để đi mua vở. Vở loại A có giá 3000 đồng một cuốn, vở loại B có giá 4000 đồng một cuốn (ảnh 1)

Vì \(x,y \ge 1\) nên các cặp \(\left( {x,\,y} \right)\) thoả mãn là \(\left( {1,1} \right);\,\left( {1,\,2} \right);\,\left( {1,\,3} \right);\,\left( {2,1} \right);\,\left( {2,2} \right);\,\left( {3,\,1} \right)\).

Vậy bạn Lan có thể mua được nhiều nhất 4 quyển vở sao cho có cả hai loại.

Câu 5

A. \(3x - 2y < - 6\).        
B. \(3x - 2y > - 6\)

C. \(3x - 2y > 0\).

D. \(3x - 2y < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m \in \mathbb{R}\). 
B. \(m \ne 0\).
C. \(m > 0\). 
D. \(m < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP