Một cầu thủ bóng chuyền đón bóng bước 1, quả bóng nảy lên và chuyển động với vận tốc ban đầu \({v_0}\left( {{\rm{m/s}}} \right)\) theo quỹ đạo là một đường parabol. Chọn hệ trục tọa độ \(Oxy\) sao cho tọa độ quả bóng ở thời điểm quả bóng bắt đầu nảy lên khỏi cánh tay của cầu thủ là \(\left( {0;{y_0}} \right)\), \({y_0}\) là độ cao của quả bóng so với mặt sân. Gọi \(\alpha \) là góc hợp bởi hướng nảy lên của quả bóng so với phương ngang thì quỹ đạo chuyển động của quả bóng có phương trình là \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\).
Giả sử quả bóng nảy lên với vận tốc ban đầu \({v_0} = 7\left( {{\rm{m/s}}} \right)\) ở độ cao \({y_0} = 0,8\,\left( {\rm{m}} \right)\).
a) Quỹ đạo chuyển động của quả bóng là

Giả sử quả bóng nảy lên với vận tốc ban đầu \({v_0} = 7\left( {{\rm{m/s}}} \right)\) ở độ cao \({y_0} = 0,8\,\left( {\rm{m}} \right)\).
Quảng cáo
Trả lời:
a) Đúng. Thay \({v_0} = 7,{y_0} = 0,8\) vào công thức \(y = \frac{{ - 4,9{x^2}}}{{v_0^2{{\cos }^2}\alpha }} + \tan \alpha \cdot x + {y_0}\)
ta được \(y = \frac{{ - 0,1}}{{{{\cos }^2}\alpha }} \cdot {x^2} + \tan \alpha \cdot x + 0,8\).
Câu hỏi cùng đoạn
Câu 2:
b) Nếu \(\alpha = 30^\circ \), sau 2 giây quả bóng ở độ cao trên \(1,7\left( {\rm{m}} \right)\).
b) Nếu \(\alpha = 30^\circ \), sau 2 giây quả bóng ở độ cao trên \(1,7\left( {\rm{m}} \right)\).
Lời giải của GV VietJack
b) Sai. Với \(\alpha = 30^\circ \), ta có \(y = \frac{{ - 0,4}}{3} \cdot {x^2} + \frac{{\sqrt 3 }}{3} \cdot x + 0,8\).
Thay \(x = 2\) vào ta được \(y \approx 1,42\left( {\rm{m}} \right)\).
Câu 3:
c) Nếu \(\alpha = 60^\circ \), quả bóng sẽ đạt độ cao tối đa là \(3\left( {\rm{m}} \right)\).
c) Nếu \(\alpha = 60^\circ \), quả bóng sẽ đạt độ cao tối đa là \(3\left( {\rm{m}} \right)\).
Lời giải của GV VietJack
c) Sai. Với \(\alpha = 60^\circ \), ta có \(y = - 0,4 \cdot {x^2} + \sqrt 3 \cdot x + 0,8\).
Suy ra \({y_{\max }} = \frac{{107}}{{40}} = 2,675\left( {\rm{m}} \right)\) khi \(x = \frac{{5\sqrt 3 }}{4}\).
Câu 4:
d) Nếu \(\alpha = 60^\circ \) và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là \(4,818\left( {\rm{m}} \right)\).
d) Nếu \(\alpha = 60^\circ \) và không có cầu thủ nào đón bóng bước 2 thì quả bóng sẽ chạm mặt sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là \(4,818\left( {\rm{m}} \right)\).
Lời giải của GV VietJack
d) Đúng.
Với \(\alpha = 60^\circ \), ta có \(y = - 0,4 \cdot {x^2} + \sqrt 3 \cdot x + 0,8\).

Gọi \(A,B\) lần lượt là vị trí bóng tiếp xúc với tay cầu thủ và vị trí bóng chạm mặt sân.
Ta có \(OA = {y_0} = 0,8\); \(OB = \frac{{\sqrt {107} + 5\sqrt 3 }}{4}\).
Vị trí quả bóng rơi xuống sân cách vị trí tiếp xúc với cánh tay cầu thủ đón bóng bước 1 một khoảng là: \(AB = \sqrt {O{A^2} + O{B^2}} \approx 4,818\,\left( {\rm{m}} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.