Câu hỏi:

24/07/2025 44 Lưu

Nguyên hàm của hàm số \(y = {{\rm{e}}^{2x - 1}}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Cách 1: \(\int {{e^{2x - 1}}} dx = \int {{e^{ - 1}}.{{\left( {{e^2}} \right)}^x}} dx = {e^{ - 1}}.\frac{{{{\left( {{e^2}} \right)}^x}}}{{\ln {e^2}}} + C = \frac{{{e^{2x - 1}}}}{2} + C\)

Cách 2:\(\int {{{\rm{e}}^{2x - 1}}{\rm{d}}x} = \frac{1}{2}\int {{{\rm{e}}^{2x - 1}}{\rm{d}}\left( {2x - 1} \right) = } \frac{1}{2}{{\rm{e}}^{2x - 1}} + C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Ta có :

\(h'\left( t \right) = 10t + 500\)

\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)

\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)

thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:

\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)

Câu 2

Lời giải

Chọn C

\[\int {f\left( x \right)} {\rm{d}}x = \int {{e^x}\left( {2017 - \frac{{2018{e^{ - x}}}}{{{x^5}}}} \right)} {\rm{d}}x = \int {\left( {2017{e^x} - \frac{{2018}}{{{x^5}}}} \right)} {\rm{d}}x = 2017{e^x} + \frac{{504,5}}{{{x^4}}} + C\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP