Một ô tô đang chạy với vận tốc 20 / (m s) thì người người đạp phanh. Sau khi đạp phanh, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 40t + 20\left( {m/s} \right)\), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bằng đầu đạp phanh. Gọi \(s\left( t \right)\) là quãng đường xe ô tô đi được trong thời gian \(t\) (giây) kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
Một ô tô đang chạy với vận tốc 20 / (m s) thì người người đạp phanh. Sau khi đạp phanh, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 40t + 20\left( {m/s} \right)\), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bằng đầu đạp phanh. Gọi \(s\left( t \right)\) là quãng đường xe ô tô đi được trong thời gian \(t\) (giây) kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
Quảng cáo
Trả lời:
Chọn D
Ta có:
\(v\left( t \right) = - 40t + 20\)
\( \Rightarrow s\left( t \right) = \int {v\left( t \right)} dt = \int {\left( { - 40t + 20} \right)} dt = - 20{t^2} + 20t + C\)
\( \Rightarrow s\left( t \right) = - 20{t^2} + 20t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\) \( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - 20{t^2} + 20t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 40t + 20 = 0 \Rightarrow t = 0,5\).
từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được: \(s\left( {0,5} \right) = - 20{\left( {0,5} \right)^2} + 20\left( {0,5} \right) = 5m\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Ta có :
\(h'\left( t \right) = 10t + 500\)
\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)
thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:
\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)
Lời giải
Chọn C
\[\int {f\left( x \right)} {\rm{d}}x = \int {{e^x}\left( {2017 - \frac{{2018{e^{ - x}}}}{{{x^5}}}} \right)} {\rm{d}}x = \int {\left( {2017{e^x} - \frac{{2018}}{{{x^5}}}} \right)} {\rm{d}}x = 2017{e^x} + \frac{{504,5}}{{{x^4}}} + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.