Cho \(\tan \alpha - \cot \alpha = 3.\) Tính giá trị của biểu thức sau: \(A = {\tan ^2}\alpha + {\cot ^2}\alpha \).
Quảng cáo
Trả lời:
Đáp án đúng là: B
\(\tan \alpha - \cot \alpha = 3 \Leftrightarrow {\left( {\tan \alpha - \cot \alpha } \right)^2} = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2\tan \alpha \cdot \cot \alpha = 9\)
\( \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2 = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha = 11\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{2}\).
b) Sai. \(\tan \alpha = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} = 2 > 0 \Rightarrow \sin \alpha \cdot {\rm{cos}}\alpha > 0\).
c) Đúng. Vì \(0^\circ < \alpha < 90^\circ \) nên \({\rm{cos}}\alpha > 0\).
Ta có \(1 + {\tan ^2}\alpha = \frac{1}{{{\rm{co}}{{\rm{s}}^2}\alpha }} \Rightarrow {\rm{co}}{{\rm{s}}^2}\alpha = \frac{1}{{1 + {2^2}}} = \frac{1}{5} \Rightarrow {\rm{cos}}\alpha = \frac{{\sqrt 5 }}{5} = \frac{1}{{\sqrt 5 }}\).
d) Sai. Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} \Rightarrow \sin \alpha = \tan \alpha \cdot {\rm{cos}}\alpha = \frac{{2\sqrt 5 }}{5}\).
Suy ra \({\rm{sin}}\alpha \,{\rm{ + }}\,{\rm{cos}}\alpha = \frac{{2\sqrt 5 }}{5} + \frac{{\sqrt 5 }}{5} = \frac{{3\sqrt 5 }}{5}\).
Lời giải
Ta có \[P = \sin \left( {90^\circ - \alpha } \right) - \cos \left( {180^\circ - \alpha } \right) = \cos \alpha - \left( { - \cos \alpha } \right) = 2\cos \alpha \].
Mặt khác \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Leftrightarrow \left[ \begin{array}{l}\cos \alpha = \frac{{2\sqrt 2 }}{3}\\\cos \alpha = - \frac{{2\sqrt 2 }}{3}\end{array} \right.\).
Lại có \(0^\circ < \alpha < 90^\circ \) nên \(\cos \alpha > 0\), từ đó ta được \(\cos \alpha = \frac{{2\sqrt 2 }}{3}\).
Vậy \[P = 2\cos \alpha = \frac{{4\sqrt 2 }}{3} \approx 1,89\].
Đáp án: \(1,89\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.