Câu hỏi:

22/07/2025 3 Lưu

Một ô tô đang chạy với vận tốc 20 / (m s) thì người người đạp phanh. Sau khi đạp phanh, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) =  - 40t + 20\left( {m/s} \right)\), trong đó t là khoảng thời gian tính bằng giây kể từ lúc bằng đầu đạp phanh. Gọi \(s\left( t \right)\) là quãng đường xe ô tô đi được trong thời gian \(t\) (giây) kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

Trả lời: ………………………….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:                                                                                   

\(v\left( t \right) =  - 40t + 20\)

\( \Rightarrow s\left( t \right) = \int {v\left( t \right)} dt = \int {\left( { - 40t + 20} \right)} dt =  - 20{t^2} + 20t + C\)

\( \Rightarrow s\left( t \right) =  - 20{t^2} + 20t + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\) \( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) =  - 20{t^2} + 20t\)

Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow  - 40t + 20 = 0 \Rightarrow t = 0,5\).

từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được: \(s\left( {0,5} \right) =  - 20{\left( {0,5} \right)^2} + 20\left( {0,5} \right) = 5m\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có :

\(h'\left( t \right) = 3a{t^2} + bt\)

\[ \Rightarrow h\left( t \right) = \int {\left( {3a{t^2} + bt} \right)} dt = a{t^3} + \frac{1}{2}b{t^2} + C\]

\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2} + C\]

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2}\]

Sau 5 giây thì thể tích nước trong bể là : \[h\left( 5 \right) = 150 \Leftrightarrow 125a + \frac{{25}}{2}b = 150\]

Sau 10 giây thì thể tích nước trong bể là :\[h\left( {10} \right) = 1100 \Leftrightarrow 1000a + 50b = 1100\]

Ta có hệ : \[\left\{ \begin{array}{l}125a + \frac{{25}}{2}b = 150\\1000a + 50b = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\]

\[ \Rightarrow h\left( t \right) = {t^3} + {t^2}\]

thể tích nước trong bể sau khi bơm được 20 giây là \[h\left( {20} \right) = {20^3} + {20^2} = 8400{m^3}\]

Lời giải

Trả lời: 11

Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t}  = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t}  =  - \frac{{9,81}}{2}{t^2} + 29,43t + C\).

Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).

Vậy \(h\left( t \right) =  - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).

Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx  - 5\).

Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).