Câu hỏi:

23/07/2025 12,884 Lưu

Bạn A.Súa thống kê số ngày có mưa, có sương mù ở bản mình trong tháng 3 vào một thời điểm nhất định và được kết quả như sau: 14 ngày

có mưa, 15 ngày có sương mù, trong đó 10 ngày có cả mưa và sương mù. Hỏi trong tháng 3 đó có bao nhiêu ngày không có mưa và không

có sương mù?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A,B\) lần lượt là tập hợp các ngày có mưa, có sương mù.

Khi đó, \(A \cap B\) là tập hợp các ngày có cả mưa và sương mù, \(A \cup B\) là tập hợp các ngày hoặc có mưa hoặc có sương mù.

Ta có: \(n\left( A \right) = 14\,;\,\,n\left( B \right) = 15\,;\,\,n\left( {A \cap B} \right) = 10\).

Số ngày hoặc có mưa hoặc có sương mù là:

\(n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right) = 14 + 15 - 10 = 19\) (ngày).

Tháng 3 có 31 ngày nên số ngày không có mưa và không có sương mù trong tháng 3 đó là: \(31 - 19 = 12\) (ngày).

Đáp án: 12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. \( - 1\) là một phần tử của tập hợp \(X\) nên \( - 1 \in X\).

b) Đúng. Tập hợp con của \(X\) có 2 phần tử là:

\(\left\{ { - 3; - 1} \right\},\left\{ { - 3;0} \right\},\left\{ { - 3;1} \right\},\left\{ { - 3;3} \right\},\left\{ { - 1;0} \right\},\left\{ { - 1;1} \right\},\left\{ { - 1;3} \right\},\left\{ {0;1} \right\},\left\{ {0;3} \right\},\left\{ {1;3} \right\}\).

Vậy số tập hợp con của \(X\) có \(2\) phần tử là \(10\).

c) Sai. Ta có \(X = \left\{ {x \in \mathbb{N}|2x + 1 \le 5} \right\}\).

Liệt kê các phần tử của tập \(X = \left\{ {1;3;5} \right\}\).

d) Đúng.

Tập con của \(X\) có 0 phần tử có 1 tập hợp là tập \(\emptyset \)

Tập con của \(X\) có 1 phần tử có 5 tập hợp

Tập con của \(X\) có 2 phần tử có 10 tập hợp

Tập con của \(X\) có 3 phần tử có 10 tập hợp

Tập con của \(X\) có 4 phần tử có 5 tập hợp

Tập con của \(X\) có 5 phần tử có 1 tập hợp là tập \(X\).

Khi đó, số tập con của tập hợp \(X\) là \(1 + 5 + 10 + 10 + 5 + 1 = 32\) tập hợp.

Lời giải

Trong lớp học có \(45\) học sinh trong đó có \(25\) học sinh thích môn Toán, \(20\) học sinh thích môn Anh, \(18\) học sinh thích môn Văn, \(6\) học sinh không thích môn nào, \(5\) học sinh thích cả ba môn. Tổng số học sinh thích chỉ một trong ba môn Toán, Anh, Văn là bao nhiêu? (ảnh 1)

Gọi \(a,b,c\) theo thứ tự là số học sinh chỉ thích một môn Toán, Văn, Anh.

\(x\) là số học sinh chỉ thích hai môn là Toán và Anh.

\(y\) là số học sinh chỉ thích hai môn là Anh và Văn.

\(z\) là số học sinh chỉ thích hai môn là Văn và Toán.

Số em thích ít nhất một môn là \(45 - 6 = 39\).

Ta có hệ \(\left\{ \begin{array}{l}a + x + z + 5 = 25\\b + y + z + 5 = 18\\c + x + y + 5 = 20\\x + y + z + a + b + c + 5 = 39\end{array} \right. \Rightarrow a + b + c = 20\).

Đáp án: 20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ {\frac{{\sqrt 5 }}{2};\sqrt 2 } \right]\). 
B. \(\left( {\sqrt 2 ; + \infty } \right)\). 
C. \(\left( { - \infty ;\frac{{\sqrt 5 }}{2}} \right]\).
D. \(\left( { - \infty ;\frac{{\sqrt 5 }}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP