Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hoá bằng công thức: \[P'\left( x \right) = - 0,0005x + 12,2\]. Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm.
a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phẩm.
b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm.
Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hoá bằng công thức: \[P'\left( x \right) = - 0,0005x + 12,2\]. Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm.
a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phẩm.
b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm.
Quảng cáo
Trả lời:

a) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 đơn vị sản phảm là \(\int_{100}^{101} {( - 0,0005x + 12,2)} {\rm{d}}x = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{101} = 12,14975\) (triệu đồng).
b) Sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 đơn vị sản phẩm là \(\int_{100}^{110} {( - 0,0005x + 12,2)} {\rm{d}}x = \left. {\left( { - \frac{1}{{4000}}{x^2} + 12,2x} \right)} \right|_{100}^{110} = 121,475\) (triệu đồng).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \({\rm{f}}({\rm{x}}) = \ln {\rm{y}}({\rm{x}})\). Lấy đạo hàm hai vế ta được: \({{\rm{f}}^\prime }({\rm{x}}) = \frac{{{y^\prime }(x)}}{{y(x)}}\).
Mà \({y^\prime }({\rm{x}}) = - 7 \cdot {10^{ - 4}}y(x)\), suy ra \( = - 7 \cdot {10^{ - 4}}\).
Do đó, \({f^\prime }(x) = - 7 \cdot {10^{ - 4}}\).
Hàm số \(f(x)\) là một nguyên hàm của hàm số \({f^\prime }(x)\).
Ta có \(\int {{f^\prime }} (x)dx = \int {\left( { - 7 \cdot {{10}^{ - 4}}} \right)} dx = - 7 \cdot {10^{ - 4}}x + C\).
Suy ra \(f(x) = - 7 \cdot {10^{ - 4}}x + C\).
Mà \(f(x) = \ln y(x)\) nên \(\ln y(x) = - 7 \cdot {10^{ - 4}}x + C\). Suy ra \(y(x) = {e^{ - 7 \cdot {{10}^{ - 4}}x + C}}\).
Vì tại \(x = 0\), nồng độ ban đầu của chất \(A\) là \(0,05\;{\rm{mo}}{{\rm{l}}^{ - 1}}\), tức là \({\rm{y}}(0) = 0,05\) nên \({e^C} = 0,05 \Leftrightarrow C = \ln 0,05\).
Vậy \(f(x) = - 7 \cdot {10^{ - 4}}x + \ln 0,05\).
b) Từ câu a, ta có \(y(x) = {e^{ - 7 \cdot {{10}^{ - 4}}x + \ln 0,05}}\).
Khi đó nồng độ trung bình của chất A từ thời điểm 15 giây đến thời điểm 30 giây là:
\(\begin{array}{l}\frac{1}{{30 - 15}}\int_{15}^{30} y (x)dx = \frac{1}{{15}}\int_{15}^{30} {{e^{ - 7 \cdot {{10}^{ - 4}}x + \ln 0,05}}} dx = \frac{{{e^{\ln 0,05}}}}{{15}}\int_{15}^{30} {{{\left( {{e^{ - 7 \cdot {{10}^{ - 4}}}}} \right)}^x}} dx\\ = \left. {\frac{1}{{300}} \cdot \frac{{{{\left( {{e^{ - 7 \cdot {{10}^4}}}} \right)}^x}}}{{\ln {e^{ - 7 \cdot {{10}^{ - 4}}}}}}} \right|_{15}^{30} = \frac{{ - 100}}{{21}}\left( {{e^{ - 7 \cdot {{10}^{ - 4}} \cdot 30}} - {e^{ - 7 \cdot {{10}^{ - 4}} \cdot 15}}} \right) \approx 0,049\left( {\;{\rm{mol}}\;{{\rm{L}}^{ - 1}}} \right).\end{array}\)
Lời giải
\(s = \int_0^{20} v (t){\rm{d}}t = \int_0^2 0 ,5t\;{\rm{d}}t + \int_2^{15} {\;{\rm{d}}} t + \int_{15}^{20} {(4 - 0,2t)} {\rm{dt}} = \left. {\frac{1}{4}{t^2}} \right|_0^2 + \left. t \right|_2^{15} + \left. {\left( {4t - \frac{1}{{10}}{t^2}} \right)} \right|_{15}^{20} = 1 + 13 + \frac{5}{2} = 16,5(\;{\rm{km}}).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.