Câu hỏi:

24/07/2025 9 Lưu

Một chất điểm A xuất phát từ 0, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)=1180t2+1118t(m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng a(m/s) (a là hằng số)
. Sau khi \[B\] xuất phát được \[10\] giây thì đuổi kịp \[A\]. Vận tốc của \[B\] tại thời điểm đuổi kịp \[A\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
+) Từ đề bài, ta suy ra: tính từ lúc chất điểm \[A\] bắt đầu chuyển động cho đến khi bị chất điểm \[B\] bắt kịp thì \[A\] đi được \[15\] giây, \[B\] đi được 10 giây.
+) Biểu thức vận tốc của chất điểm \[B\] có dạng \[{v_B}\left( t \right) = \int {a{\rm{d}}t} = at + C\], lại có \[{v_B}\left( 0 \right) = 0\] nên \[{v_B}\left( t \right) = at\].
+) Từ lúc chất điểm \[A\] bắt đầu chuyển động cho đến khi bị chất điểm \[B\] bắt kịp thì quãng đường hai chất điểm đi được là bằng nhau. Do đó
\[\int\limits_0^{15} {\left( {\frac{1}{{180}}{t^2} + \frac{{11}}{{18}}t} \right){\rm{d}}t} = \int\limits_0^{10} {at{\rm{d}}t} \]\[ \Leftrightarrow 75 = 50a\]\[ \Leftrightarrow a = \frac{3}{2}\].

Từ đó, vận tốc của \[B\] tại thời điểm đuổi kịp \[A\] bằng vB(10)=3.102 = 15

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vận tốc chuyển động \[v(t) = \int {a(t){\rm{d}}t}  = \int {(3{t^2} + t){\rm{d}}t}  = {t^3} + \frac{1}{2}{t^2} + C.\]
Chọn gốc thời gian lúc bắt đầu tăng tốc thì \[v(0) = 2 \Rightarrow C = 2 \Rightarrow v(t) = {t^3} + \frac{1}{2}{t^2} + 2.\]
Khi đó tại thời điểm \[2\,{\rm{s}}\] thì \[v(2) = 12\,{\rm{m/s}}.\]

Lời giải

Thời gian kể từ kể từ lúc đạp phanh đến lúc xe dừng hẵn là \( - 2t + 20 = 0 \Leftrightarrow t = 10.\)
Quảng đường ô tô đi được trong 10s kể từ lúc đạp phanh là \(\int\limits_0^{10} {\left( { - 2t + 20} \right){\rm{d}}x}  = 100\) m.
Quảng đường ô tô đi được trong 5s cuối trước khi đạp phanh là \(20.5 = 100\) m.
Vậy trong 15s cuối, ô tô đi được quảng đường là \(200\) m.