Câu hỏi:

24/07/2025 16 Lưu

    Một chất điểm \(A\) xuất phát từ \(O\), chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật \(v\left( t \right) = \frac{1}{{100}}{t^2} + \frac{{13}}{{30}}t \left( {{\rm{m/s}}} \right)\), trong đó \(t\) (giây) là khoảng thời gian tính từ lúc \(A\) bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm \(B\) cũng xuất phát từ \(O\), chuyển động thẳng cùng hướng với \(A\) nhưng chậm hơn \(10\) giây so với \(A\) và có gia tốc bằng \(a \left( {{\rm{m/}}{{\rm{s}}^2}} \right)\) (\(a\) là hằng số). Sau khi \(B\) xuất phát được \(15\) giây thì đuổi kịp \(A\). Vận tốc của \(B\) tại thời điểm đuổi kịp \(A\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ta có \({v_B}\left( t \right) = \int {a.{\rm{dt}}}  = at + C\), \({v_B}\left( 0 \right) = 0 \Rightarrow C = 0\) \( \Rightarrow {v_B}\left( t \right) = at\).
Quãng đường chất điểm \(A\) đi được trong \(25\) giây là
\({S_A} = \int\limits_0^{25} { \left( {\frac{1}{{100}}{t^2} + \frac{{13}}{{30}}t } \right){\rm{dt}}} \) \( = \left( {\frac{1}{{300}}{t^3} + \frac{{13}}{{60}}{t^2}} \right) \left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle25\atop\scriptstyle}} \right. = \frac{{375}}{2}\).
Quãng đường chất điểm \(B\) đi được trong \(15\) giây là sB=015at.dt=at22150=225a2
Ta có \(\frac{{375}}{2} = \frac{{225a}}{2} \Leftrightarrow a = \frac{5}{3}\). Vận tốc của \(B\) tại thời điểm đuổi kịp \(A\) là \({v_B}\left( {15} \right) = \frac{5}{3}.15 = 25 \left( {{\rm{m/s}}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(a\,\left( h \right)\) là khoảng thời gian hai xe gặp nhau.
Sau \(a\,\left( h \right)\) xe ôt ô thứ nhất đi được quãng đường \(\int\limits_0^a {\left( {2t + 1} \right){\rm{d}}t}  = {a^2} + a\).
Xét chuyển động của xe ô tô thứ 2.
+) Chọn mốc thời gian là lúc người lái xe đạp phanh.
Ta có \({v_0} = v\left( {{t_0}} \right) =  - 5{t_0} + 20\)
Mặt khác \({v_0} = 10\)\( \Rightarrow  - 5{t_0} + 20 = 10 \Rightarrow {t_0} = 2\).
Vậy sau khi chạy được \(2\left( h \right)\)xe ô tô thứ 2 đạp phanh.
Sau \(a\,\left( h \right)\) xe ô tô thứ 2 cách \(A\)một quãng đường là \(22 + 10.2 + \int\limits_2^a {\left( { - 5t + 20} \right){\rm{d}}t} \)\( = 12 - \frac{5}{2}{a^2} + 20a\)
Sau \(a\,\left( h \right)\) hai xe gặp nhau nên ta có:\({a^2} + a = 12 - \frac{5}{2}{a^2} + 20a\)\( \Leftrightarrow \frac{7}{2}{a^2} - 19a - 12 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}a =  - \frac{4}{7}\,\\a = 6\end{array} \right.\)
Vậy \(a = 6\).

Lời giải

Vận tốc ô tô sau khi phanh gấp là: \({v_2}\left( t \right) = \int {\left( { - 70} \right){\rm{d}}t =  - 70t + c} \)
Khi \(t = 5\) thì \({v_1}\left( 5 \right) = 35\) \( \Rightarrow {v_2}\left( 0 \right) = 35\)\( \Leftrightarrow c = 35\)
Khi ô tô dừng hẳn thì \({v_2}\left( t \right) = 0 \Leftrightarrow t = \frac{1}{2}\)
Vậy quãng đường \(S\) từ lúc ô tô bắt đầu chuyển bánh cho đến khi dừng hẳn là \(S = \int\limits_0^5 {\left( {7t} \right)} {\rm{d}}t + \int\limits_0^{\frac{1}{2}} {\left( { - 70t + 35} \right)} {\rm{d}}t = \frac{{385}}{4}m\)