Nếu \(\int\limits_0^1 {f\left( x \right){\rm{d}}x = 2} \) và \(\int\limits_1^3 {f\left( x \right){\rm{d}}x = 5} \) thì \[\int\limits_0^3 {f\left( x \right){\rm{d}}x} \] bằng
Quảng cáo
Trả lời:
Chọn C
Ta có \[\int\limits_0^3 {f\left( x \right){\rm{d}}x} = \int\limits_0^1 {f\left( x \right){\rm{d}}x} + \int\limits_1^3 {g\left( x \right){\rm{d}}x} = 2 + 5 = 7\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Ta có \[\int\limits_{ - 1}^4 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_{ - 1}^4 {f\left( x \right)dx} + \int\limits_{ - 1}^4 {g\left( x \right)dx = 2 + } 3 = 5\].
Lời giải
Chọn A
Ta có \(\int\limits_1^3 {\frac{{x + 2}}{x}} dx = \int\limits_1^3 {\left( {1 + \frac{2}{x}} \right)dx} = \int\limits_1^3 {dx} + \int\limits_1^3 {\frac{2}{x}} dx = 2 + 2\left. {\ln \left| x \right|} \right|_1^3 = 2 + 2\ln 3.\)
Do đó \(a = 2,\,b = 2,\,c = 3 \Rightarrow S = 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.