Cho \(\int\limits_1^2 {{e^{3x - 1}}{\rm{d}}x} = m\left( {{e^p} - {e^q}} \right)\) với \(m\), \(p\), \(q \in \mathbb{Q}\) và là các phân số tối giản. Giá trị \(m + p + q\) bằng
Quảng cáo
Trả lời:
Chọn C
Ta có \(\int\limits_1^2 {{e^{3x - 1}}{\rm{d}}x} = \int\limits_1^2 {{e^{3x - 1}}{\rm{d}}\left( {3x - 1} \right)} \)\( = \frac{1}{3} \cdot {e^{3x - 1}}\left. {} \right|_1^2 = \frac{1}{3}\left( {{e^5} - {e^2}} \right)\). Suy ra \(m = \frac{1}{3}\), \(p = 5\) và \(q = 2\).
Vậy \(m + p + q = \frac{1}{3} + 5 + 2 = \frac{{22}}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Theo định nghĩa tích phân ta có \(I = \int\limits_0^1 {\left( {4x - 2{m^2}} \right){\rm{d}}x} = \left. {\left( {2{x^2} - 2{m^2}x} \right)} \right|_0^1 = - 2{m^2} + 2\).
Khi đó \(I + 6 > 0 \Leftrightarrow - 2{m^2} + 2 + 6 > 0 \Leftrightarrow - {m^2} + 4 > 0 \Leftrightarrow - 2 < m < 2\)
Mà \(m\)là số nguyên nên \(m \in \left\{ { - 1;0;1} \right\}\). Vậy có 3 giá trị nguyên của \(m\)thỏa mãn yêu cầu.
Lời giải
Chọn A
\(I = \int\limits_1^e {\left( {\frac{1}{x} - \frac{1}{{{x^2}}}} \right)} dx = \left. {\left( {\ln \left| x \right| + \frac{1}{x}} \right)} \right|_1^e = \frac{1}{e}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.