Câu hỏi:

28/07/2025 116 Lưu

Một người chạy trong thời gian 1 giờ, vận tốc \(v\) (km/h) phụ thuộc vào thời gian \(t\) (h) có đồ thị là một phần parabol với đỉnh \(I\left( {\frac{1}{2};{\rm{ }}8} \right)\) và trục đối xứng song song với trục tung như hình bên. Tính quảng đường \(s\) người đó chạy được trong khoảng thời gian \(45\) phút, kể từ khi chạy?

(Trả lời ngắn)Câu 21.	Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh  (ảnh 1)

Trả lời:……………………………..

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(s = 4,5\) (km)

(Trả lời ngắn)Câu 21.	Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh  (ảnh 2)

Gọi parabol là \(\left( P \right):y = a{x^2} + bx + c\). Từ hình vẽ ta có \(\left( P \right)\) đi qua \(O\left( {0;{\rm{ }}0} \right)\), \(A\left( {1;{\rm{ }}0} \right)\) và điểm \(I\left( {\frac{1}{2};{\rm{ }}8} \right)\).

Ta có hệ: \(\left\{ \begin{array}{l}c = 0\\a + b + c = 0\\\frac{a}{4} + \frac{b}{2} + c = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 32\\b = 32\\c = 0\end{array} \right.\).

Suy ra \(\left( P \right):y =  - 32{x^2} + 32x\).

Vậy quảng đường người đó đi được là \[s = \int\limits_0^{\frac{3}{4}} {\left( { - 32{x^2} + 32x} \right){\rm{d}}x}  = 4,5\](km).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

- Tại thời điểm \(t = 6\)vật đang chuyển động với vận tốc \({v_0}\) nên có \(v(6) = {v_0}\)\( \Leftrightarrow  - \frac{5}{2}.6 + a\,\, = {v_0} \Leftrightarrow a\,\, = {v_0} + 15\), suy ra \(v(t) =  - \frac{5}{2}t + {v_0} + 15\).

- Gọi \(k\)là thời điểm vật dừng hẳn, vậy ta có \(v(k) = 0 \Leftrightarrow k = \frac{2}{5}.\left( {{v_0} + 15} \right) \Leftrightarrow k = \frac{{2{v_0}}}{5} + 6\).

- Tổng quãng đường vật đi được là \[80 = 6.{v_0} + \int\limits_6^k {\left( { - \frac{5}{2}t + {v_0} + 15} \right)dt} \]

\[\begin{array}{l} \Leftrightarrow 80 = 6.{v_0} + \left. {\left( { - \frac{5}{4}{t^2} + {v_0}.t + 15t} \right)} \right|_6^k\\ \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}({k^2} - {6^2}) + {v_0}.(k - 6) + 15(k - 6)\\ \Leftrightarrow 80 = 6.{v_0} - \frac{5}{4}\left( {\frac{{4{{\left( {{v_0}} \right)}^2}}}{{25}} + \frac{{24{v_0}}}{5}} \right) + {v_0}.\frac{{2{v_0}}}{5} + 15.\frac{{2{v_0}}}{5}\\ \Leftrightarrow {\left( {{v_0}} \right)^2} + 36.{v_0} - 400 = 0\\ \Leftrightarrow {v_0} = 10\end{array}\]

Lời giải

Ta có 1 giờ 30 phút = 1,5 giờ \( \Rightarrow S = \int\limits_0^{1,5} {v(t){\rm{d}}t} \).

Đồ thị \[v = v(t)\] đi qua gốc tọa độ nên \[v(t)\] có dạng \[v(t) = a{t^2} + bt\].

Đồ thị \[v = v(t)\] có đỉnh là I(1;5) nên \[\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b =  - 2a\\a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 5\\b = 10\end{array} \right. \Rightarrow v(t) =  - 5{t^2} + 10t\]

\(S = \int\limits_0^{1,5} {\left( { - 5{t^2} + 10t} \right){\rm{d}}t}  = \frac{{45}}{8} \approx 5,63\).