Câu hỏi:

19/08/2025 41 Lưu

Cho hàm số \(f\left( x \right) = \ln \frac{{2018x}}{{x + 1}}\). Tính tổng S = f'(1) + f'(2) + …+f'(2018) thu được phân số tối giản \(\frac{a}{b}\left( {a,b \in \mathbb{N}} \right)\). Tính 2b – a.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(f'\left( x \right) = \frac{{x + 1}}{{2018x}}.{\left( {\frac{{2018x}}{{x + 1}}} \right)^\prime } = \frac{1}{{x\left( {x + 1} \right)}} = \frac{1}{x} - \frac{1}{{x + 1}}\).

Do đó \(f'\left( 1 \right) = \frac{1}{1} - \frac{1}{2};f'\left( 2 \right) = \frac{1}{2} - \frac{1}{3};...;f'\left( {2018} \right) = \frac{1}{{2018}} - \frac{1}{{2019}}\).

Suy ra S = f'(1) + f'(2) + …+f'(2018) = \(1 - \frac{1}{{2019}} = \frac{{2018}}{{2019}}\).

Suy ra a = 2018; b = 2019. Do đó 2b – a = 2020.

Trả lời: 2020.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. x < −1.                
B. x < 0.                   
C. x > 0. 
D. −1 < x < 0.

Lời giải

C

Ta có f'(x) = 4x3 + 4x.

Để f'(x) > 0 Û 4x3 + 4x > 0 Û 4x(x2 + 1) > 0 Û 4x > 0 Û x > 0.

Câu 4

A. \(y' = {2^x}\ln 2 + \frac{1}{{x\ln 2}}\).                                                                   
B. \(y' = {2^x} + \frac{1}{{x\ln 5}}\).       
C. \(y' = {2^x}\ln 2 + \frac{1}{{\ln 5}}\).                                                                   
D. \(y' = {2^x}\ln 2 + \frac{1}{{x\ln 5}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. y' = 6cos3x – 2sin2x.                                
B. y' = 2cos3x + sin2x.                              
C. y' = −6cos3x + 2sin2x.                             
D. y' = 2cos3x – sin2x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP