Ta đã biết công thức tính thể tích của khối cầu bán kính R là \(V = \frac{{4\pi {R^3}}}{3}\). Em hãy chứng minh công thức đó.
Ta đã biết công thức tính thể tích của khối cầu bán kính R là \(V = \frac{{4\pi {R^3}}}{3}\). Em hãy chứng minh công thức đó.
Quảng cáo
Trả lời:

Sau khi học xong bài, ta giải quyết bài toán này như sau:

Từ đó thể tích khối cầu là: \(V = \pi \int_{ - R}^R {\left( {{R^2} - {x^2}} \right)} dx = \left. {\pi \left( {{R^2}x - \frac{{{x^3}}}{3}} \right)} \right|_{ - R}^R = \frac{{4\pi {R^3}}}{3}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích khối chóp đó là: \(V = \int_0^h S (x){\rm{d}}x = \int_0^h B \frac{{{x^2}}}{{{h^2}}}\;{\rm{d}}x = \left. {B\frac{{{x^3}}}{{3{h^2}}}} \right|_0^h = B\frac{{{h^3}}}{{3{h^2}}} = \frac{{Bh}}{3}.\)
Lời giải
Thể tích khối chóp cụt đều đó là:
\(V = \int_a^b S (x)dx = \int_a^b B \frac{{{x^2}}}{{{b^2}}}dx = \left. {B\frac{{{x^3}}}{{3{b^2}}}} \right|_a^b = \frac{B}{{3{b^2}}}\left( {{b^3} - {a^3}} \right) = B \cdot \frac{{b - a}}{3} \cdot \frac{{{a^2} + ab + {b^2}}}{{{b^2}}} = \frac{{b - a}}{3} \cdot B\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{a}{b} + 1} \right).\)
\({\rm{ Vi }}{B^\prime } = B\frac{{{a^2}}}{{{b^2}}}{\rm{ hay }}\frac{{{B^\prime }}}{B} = \frac{{{a^2}}}{{{b^2}}}{\rm{ và h}} = {\rm{b - a nên }}\)\(V = \frac{h}{3} \cdot B\left( {\frac{{{B^\prime }}}{B} + \sqrt {\frac{{{B^\prime }}}{B}} + 1} \right) = \frac{h}{3}\left( {B + \sqrt {B{B^\prime }} + {B^\prime }} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.