Câu hỏi:

29/07/2025 11 Lưu

Sau khi được thả rơi tự do từ độ cao 100 m , một vật rơi xuống với tốc độ \({\rm{v}}({\rm{t}}) = 10{\rm{t}}({\rm{m}}/{\rm{s}})\), trong đó t là thời gian tính theo giây kể từ khi thả vật.

a) Tính quãng đường \(s(t)\) vật di chuyển được sau thời gian \(t\) giây (trong khoảng thời gian vật đang rơi).

b) Sau bao nhiêu giây thì vật chạm đất? Tính tốc độ rơi trung bình của vật.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Quãng đường \(s(t)\) vật di chuyển được sau thời gian \(t\) giây là:

\(s(t) = \int v (t)dt = \int 1 0tdt = 5{t^2} + C{\rm{. }}\)

\({\mathop{\rm Vis}\nolimits} (0) = 0\) nên \(C = 0\).

Do đó \(s(t) = 5{t^2}\).

b) Vật chạm đất khi \({\rm{s}}({\rm{t}}) = 100 \Leftrightarrow 5{{\rm{t}}^2} = 100 =  > t = 2\sqrt 5 (\) vì \({\rm{t}} > 0)\).

Vậy vật chạm đất sau \(2\sqrt 5  \approx 4,47\) giây.

Tốc độ rơi trung bình là \(\frac{1}{{2\sqrt 5 }}\int_0^{2\sqrt 5 } 1 0tdt = \left. {\frac{1}{{2\sqrt 5 }} \cdot 5{t^2}} \right|_0^{2\sqrt 5 } = 10\sqrt 5 \;{\rm{m}}/{\rm{s}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Giả sử parabol \(y = f(x)\) cho bời \(f(x) = a{x^2} + bx + c(a \ne 0)\). Do parabol \(y = f(x)\) đi qua điểm \(D(0;2)\) nên \(c = 2\), suy ra \(f(x) = a{x^2} + bx + 2(a \ne 0)\). Vì parabol \(y = f(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16a - 4b + 2 = 0}\\{16a + 4b + 2 = 0.}\end{array}} \right.\)

Hệ phương trình trên có nghiệm là \(a =  - \frac{1}{8},b = 0\). Vậy \(f(x) =  - \frac{1}{8}{x^2} + 2\).

- Giả sử parabol \(y = g(x)\) cho bởi \(g(x) = {a_1}{x^2} + {b_1}x + {c_1}\left( {{a_1} \ne 0} \right)\). Do parabol \(y = g(x)\) đi qua điểm \(G(0; - 3)\) nên \({c_1} =  - 3\), suy ra \(g(x) = {a_1}{x^2} + {b_1}x - 3\left( {{a_1} \ne 0} \right)\). Vì parabol \(y = g(x)\) đi qua các điểm \(C( - 4;0),E(4;0)\) nên ta có: \(\left\{ {\begin{array}{*{20}{l}}{16{a_1} - 4{b_1} - 3 = 0}\\{16{a_1} + 4{b_1} - 3 = 0.}\end{array}} \right.\)

Hệ phương trình trên có nghiệm là \({a_1} = \frac{3}{{16}},{b_1} = 0\). Vậy \(g(x) = \frac{3}{{16}}{x^2} - 3\).

b) Diện tích của logo là: \(S = {S_1} + {S_2}\), trong đó \({S_1}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) =  - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x =  - 5,x =  - 4\); \({S_2}\) là diện tích hình phẳng giới hạn bởi các parabol \(f(x) =  - \frac{1}{8}{x^2} + 2,g(x) = \frac{3}{{16}}{x^2} - 3\) và hai đường thẳng \(x =  - 4,x = 4\).

Do đó, ta có:

\(S = \int_{ - 5}^{ - 4} | f(x) - g(x)|{\rm{d}}x + \int_{ - 4}^4 | f(x) - g(x)|{\rm{d}}x\)

\( = \int_{ - 5}^{ - 4} {\left[ {\left( {\frac{3}{{16}}{x^2} - 3} \right) - \left( { - \frac{1}{8}{x^2} + 2} \right)} \right]} {\rm{d}}x + \int_{ - 4}^4 {\left[ {\left( { - \frac{1}{8}{x^2} + 2} \right) - \left( {\frac{3}{{16}}{x^2} - 3} \right)} \right]} {\rm{d}}x\)

\( = \int_{ - 5}^4 {\left( {\frac{5}{{16}}{x^2} - 5} \right)} {\rm{d}}x + \int_{ - 4}^4 {\left( { - \frac{5}{{16}}{x^2} + 5} \right)} {\rm{d}}x\)

\( = \left. {\frac{5}{{48}}{x^3}} \right|_{ - 5}^{ - 4} - \left. {5x} \right|_{ - 5}^{ - 4} - \left. {\frac{5}{{48}}{x^3}} \right|_{ - 4}^4 + \left. {5x} \right|_{ - 4}^4\)

\( = \frac{{305}}{{48}} - 5 - \frac{{640}}{{48}} + 40 = \frac{{1345}}{{48}}.\)

\(S = \frac{{1345}}{{48}}\left( {{\rm{d}}{{\rm{m}}^2}} \right).\)

c) Gọi \(t\) là lượng ánh sáng đi qua mỗi $\mathrm{dm}^2$ của logo. Suy ra lượng ánh sáng đi qua logo là \(\frac{{1345}}{{48}}t\). Mặt khác, diện tích của cửa sổ là \((8 + 1) \cdot (2 + 3) = 45\left( {{\rm{d}}{{\rm{m}}^2}} \right)\) và lượng ánh sáng đi qua mỗi \({\rm{d}}{{\rm{m}}^2}\) của phần cửa sổ nằm ngoài logo là 2t. Suy ra, lượng ánh sáng đi qua cửa sổ trược khi làm logo là \(45.2t = 90t\) và lượng ánh sáng đi qua phẩn cửa sổ nằm ngoài logo là: \(\left( {45 - \frac{{1345}}{{48}}} \right)2t = \frac{{815}}{{24}}t\)

Do đó, tổng lượng ánh sáng đi qua cửa sổ sau khi làm logo là: \(\frac{{1345}}{{48}}t + \frac{{815}}{{24}}t = \frac{{2975}}{{48}}t.\)

Tỉ số phần trăm của lượng ánh sáng đi qua cửa sổ sau khi làm logo so vởi lượng ánh sáng đi qua cửa sổ trược khi làm logo là:  \(\left( {\frac{{2975}}{{48}}t:90t} \right) \cdot 100\%  = \frac{{297500}}{{4320}}\%  \approx 68,9\% {\rm{. }}\)

Vậy lượng ánh sáng khi đi qua toàn bộ cửa sổ sau khi làm logo sẽ giảm đi xấp xỉ là: 100% - 68,9% = 31,1%

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP