Tính diện tích \(S\) hình phẳng giới hạn bởi các đường \(y = {x^2} + 1,\,x = - 1,\,x = 2\) và trục hoành.
Quảng cáo
Trả lời:
Chọn A
Ta có: \(S = \int\limits_{ - 1}^2 {\left| {{x^2} + 1} \right|} \,{\rm{d}}x = \int\limits_{ - 1}^2 {\left( {{x^2} + 1} \right)} \,{\rm{d}}x = 6\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = a\], \[x = b\] là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} = \) \(\int\limits_a^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \) \( = - \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.