Câu hỏi:

29/07/2025 10 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}.\) Gọi \(S\) là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 1\)\(x = 5\) (như hình vẽ bên).

Cho hàm số y = f( x ) liên tục trên R. Gọi (S) là diện tích hình phẳng giới hạn bởi các đường y = f( x),y = 0,x =  - 1 và x = 5 (như hình vẽ  (ảnh 1)

Mệnh đề nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Ta có: \[S = \int\limits_{ - 1}^1 {\left| {f(x)} \right|{\rm{d}}x} + \int\limits_1^5 {\left| {f\left( x \right)} \right|{\rm{d}}x} = \int\limits_{ - 1}^1 {f\left( x \right){\rm{d}}x} - \int\limits_1^5 {f\left( x \right){\rm{d}}x} \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C

Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = a\], \[x = b\]\(S = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} = \) \(\int\limits_a^c {\left| {f\left( x \right)} \right|{\rm{d}}x} + \int\limits_c^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \) \( = - \int\limits_a^c {f(x){\rm{d}}x} + \int\limits_c^b {f(x){\rm{d}}x} \).

Câu 2

Lời giải

Chọn B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP