Câu hỏi:

29/07/2025 26 Lưu

Gọi \(D\) là hình phẳng giới hạn bởi các đường \(y = {e^{3x}}\), \(y = 0\), \(x = 0\)\(x = 1\). Thể tích của khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có thể tích của khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\) bằng:

\(\pi \int\limits_0^1 {{{\left( {{e^{3x}}} \right)}^2}dx} = \pi \int\limits_0^1 {{e^{6x}}dx} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Phương trình hoành độ giao điểm: \({x^2} + 5 = 6x \Leftrightarrow x = 5;x = 1\).

Diện tích hình phẳng cần tìm: \(S = \int\limits_0^1 {\left| {{x^2} - 6x + 5} \right|{\rm{d}}x} = \frac{7}{3}\).

Câu 2

Lời giải

Chọn D

Diện tích hình phẳng được tô đậm trong hình vẽ bên là:

\[\int\limits_{ - 1}^1 {\left| {{x^2} - 2 - \left( { - \sqrt {\left| x \right|} } \right)} \right|{\rm{d}}x} = \int\limits_{ - 1}^1 {\left( { - \sqrt {\left| x \right|} - {x^2} + 2} \right){\rm{d}}x} \] ( vì \(x \in \left[ { - 1;1} \right] \Rightarrow - \sqrt {\left| x \right|} > {x^2} - 2\)).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP