Cho phương trình \(\sqrt {2{x^2} + 5} = \sqrt {{x^2} - x + 11} \) (*).
a) Điều kiện: \(x \ge 0\).
b) Bình phương hai vế của phương trình (*) ta được \({x^2} + x - 6 = 0\).
c) Phương trình (*) có 1 nghiệm.
d) Giả sử \({x_1},{x_2}\,\left( {{x_1} < {x_2}} \right)\) là nghiệm của phương trình (*) khi đó: \({x_1} - 2{x_2} = 7\).
Quảng cáo
Trả lời:
Lời giải
a) Sai. Điều kiện của phương trình là \(\left\{ \begin{array}{l}2{x^2} + 5 \ge 0\\{x^2} - x + 11 \ge 0\end{array} \right.\), điều này luôn đúng với mọi \(x \in \mathbb{R}\).
b) Đúng. Bình phương hai vế phương trình (*), ta được: \(2{x^2} + 5 = {x^2} - x + 11\).
Rút gọn ta được \({x^2} + x - 6 = 0\).
c) Sai. Phương trình \({x^2} + x - 6 = 0\) có hai nghiệm \(x = 2\); \(x = - 3\).
Thay giá trị \(x = 2\) vào phương trình (*): \(\sqrt {13} = \sqrt {13} \) (thỏa mãn).
Thay giá trị \(x = - 3\) vào phương trình (*): \(\sqrt {23} = \sqrt {23} \) (thỏa mãn).
Vậy tập nghiệm phương trình là \(S = \left\{ {2; - 3} \right\}\).
d) Sai. Với \({x_1},{x_2}\,\left( {{x_1} < {x_2}} \right)\) là nghiệm của phương trình (*), ta có \({x_1} = - 3;{x_2} = 2\).
Khi đó, \({x_1} - 2{x_2} = - 3 - 2 \cdot 2 = - 7\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Gọi thời gian chú thỏ chạy trên đoạn \(AD\) là \(x\,\,\left( {0 < x < 30} \right)\) (giây), khi đó thời gian chú thỏ chạy trên đoạn \(BD\) là \(30 - x\) (giây). Do đó, quãng đường \(AD\) và \(BD\) lần lượt là \(13x\,\,{\rm{(m)}}\) và \(15\left( {30 - x} \right)\,\,{\rm{(m)}}\).
Độ dài quãng đường \(BC\) là: \(\sqrt {{{370}^2} - {{120}^2}} = 350\,\,{\rm{(m)}}\).
Tam giác \(ACD\) vuông tại \(C\) nên \(CD = \sqrt {{{\left( {13x} \right)}^2} - {{120}^2}} \,\,{\rm{(m)}}\).
Mặt khác, \(CD = BC - BD = 350 - 15\left( {30 - x} \right)\,\,{\rm{(m)}}\).
Do đó, ta có: \(\sqrt {{{\left( {13x} \right)}^2} - {{120}^2}} = 350 - 15\left( {30 - x} \right)\).
Giải phương trình này và kết hợp với điều kiện \(0 < x < 30\), ta nhận \(x = 10\) (giây).
Vậy khoảng cách giữa vị trí \(C\) và vị trí \(D\) là: \(350 - 15 \cdot \left( {30 - 10} \right) = 50\,\,{\rm{(m)}}\).
Đáp án: \(50\).
Lời giải
Đáp án đúng là: B
Ta có \(\sqrt {2{x^2} + 4x - 1} = x + 1 \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\2{x^2} + 4x - 1 = {\left( {x + 1} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\{x^2} + 2x - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - 1\\x = - 1 \pm \sqrt 3 \end{array} \right. \Rightarrow x = - 1 + \sqrt 3 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.