Câu hỏi:

31/07/2025 28 Lưu

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\sqrt 2 \), chiều cao bằng 2a và \(O\) là tâm của đáy. Bằng cách thiết lập hệ trục toạ độ Oxyz như Hình vẽ, tính khoảng cách từ điểm \(C\) đến mặt phẳng \((SAB)\).

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a= sqrt 2, chiều cao bằng 2a (ảnh 1)
 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào hệ trục toạ độ như hình vẽ, ta có \(O(0;0;0),S(0;0;2a)\), \(A( - a;0;0),B(0;a;0)\) và \(C(a;0;0)\).

Khi đó \((SAB)\) có phương trình là \(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1\) hay \( - 2x + 2y + z - 2a = 0\).

Vậy \(d(C,(SAB)) = \frac{{| - 2 \cdot a - 2a|}}{{\sqrt {{{( - 2)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mặt phẳng \((ABC)\) đi qua ba điểm \(A(1;1;1),B(2;3;4),C(5;2;3)\) nên có cặp vectơ chỉ phương là \(\overrightarrow {AB}  = (1;2;3),\overrightarrow {AC}  = (4;1;2)\), suy ra \((ABC)\) có vectơ pháp tuyến \(\vec n = (2.2 - 3.1;3.4 - 1.2;1.1 - 2.4) = (1;10; - 7)\).

Phương trình của \((ABC)\) là: \(1(x - 1) + 10(y - 1) - 7(z - 1) = 0\) hay \(x + 10y - 7z - 4 = 0\).

Chiều cao SH cùa hình chóp S.ABC chính là khoàng cách từ điểm \(S\) đến \((ABC)\).

Ta có: \(SH = d(S,(ABC)) = \frac{{|1.5 + 10 \cdot 0 + ( - 7) \cdot 1 - 4|}}{{\sqrt {{1^2} + {{10}^2} + {{( - 7)}^2}} }} = \frac{6}{{5\sqrt 6 }} = \frac{{\sqrt 6 }}{5}\).

Lời giải

Ta có \(\overrightarrow {{n_P}}  = (1;3; - 1),\overrightarrow {{n_Q}}  = (1; - 1; - 2)\) vì \(\overrightarrow {{n_P}}  \cdot \overrightarrow {{n_Q}}  = 1 \cdot 1 + 3 \cdot ( - 1) + ( - 1) \cdot ( - 2) = 0\)

Do đó hai mặt phẳng \(({\rm{P}})\) và \(({\rm{Q}})\) vuông góc với nhau.

\(\begin{array}{l}{\rm{ b) Do M}} \in {\rm{Ox nên M}} ({\rm{a}};0;0){\rm{.  Do d}}({\rm{M}},({\rm{P}})) = {\rm{d}}({\rm{M}},({\rm{Q}})) {\rm{ nên }} \frac{{|a|}}{{\sqrt {1 + 9 + 1} }} = \frac{{|a + 1|}}{{\sqrt {1 + 1 + 4} }} \Leftrightarrow \sqrt 6 |a| = \sqrt {11} |a + 1|\\ \Leftrightarrow 6{a^2} = 11{a^2} + 22a + 11 \Leftrightarrow 5{a^2} + 22a + 11 = 0 \Leftrightarrow a = \frac{{ - 11 - \sqrt {66} }}{5}{\rm{ hay }}a = \frac{{ - 11 + \sqrt {66} }}{5}\end{array}\)Vậy có hai điểm \(M\) thỏa mãn yêu cầu là: \({M_1}\left( {\frac{{ - 11 - \sqrt {66} }}{5};0;0} \right),{M_2}\left( {\frac{{ - 11 + \sqrt {66} }}{5};0;0} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP